18.156 Lecture Notes

April 15, 2015

trans. Jane Wang

Today's class will be split up into a discussion of the last problem set and then a continuation of our discussion of Calderon-Zygmund.

1 Pset 4, Problem 3

We're going to start today with a discussion of problem 3 on the previous homework assignment (problem set 4). A lot of people tried to prove that

$$
V_{T f_{k}}\left(2^{\ell}\right) \lesssim\left|S_{k}(f)\right|^{q_{\theta} / p_{\theta}} 2^{k q_{\theta}} 2^{-\ell q_{\theta}} 2^{-\epsilon|k-\ell|} .
$$

Unfortunately, this isn't quite true. Instead, let

$$
A:=\left|S_{k}(f)\right|^{q_{\theta} / p_{\theta}} 2^{k q_{\theta}} 2^{-\ell q_{\theta}} .
$$

We get two bounds from our two $\left\|T f_{k}\right\|_{q_{i}} \lesssim\left\|f_{k}\right\|_{p_{i}}$ bounds, and we should let $\bar{\ell}$ be the value of ℓ where the two things that we get from these bounds are equal to each other, and use $\bar{\ell}$ instead of k. Then,

$$
V_{T f_{k}}\left(2^{\ell}\right) \lesssim A 2^{-\epsilon|\ell-\bar{\ell}|}
$$

and when $|\ell-\bar{\ell}|$ is big, we have a gain. We note here that $\bar{\ell}$ depends on both K and $\left|S_{k}(f)\right|$. We want when

$$
\left|S_{k}(f)\right|^{q_{1} / p_{1}} 2^{k q_{1}} 2^{-\ell q_{1}}=\left|S_{k}(f)\right|^{q_{0} / p_{0}} 2^{k q_{0}} 2^{-\ell q_{0}} .
$$

We can solve this for $\bar{\ell}$ if $q_{0} \neq q_{1}$. If $q_{1} / q_{0} \neq p_{1} / p_{0}$, then $\left|S_{k}(f)\right|$ matters. For the special case when $q_{1}=\infty$, then $V_{T f_{k}}\left(2^{\ell}\right)=0$ if $2^{\ell} \gg \ldots$ and $\bar{\ell}$ is the biggest ℓ consistent with the L^{∞} bound. Now,

$$
\begin{aligned}
\left\|T f_{k}\right\|_{q_{\theta}}^{p_{\theta}} & \sim \sum_{\ell} V_{T f_{k}}\left(2^{\ell}\right) 2^{\ell q_{\theta}} \\
& \leq \sum_{\ell}\left|S_{k}(f)\right|^{q_{\theta} / p_{\theta}} 2^{k q_{\theta}} 2^{-\epsilon|\ell-\bar{\ell}|} \sim\left\|f_{k}\right\|_{p_{\theta}}^{q_{\theta}} .
\end{aligned}
$$

Now, we want to try to combine all of the $T f_{k}$. We have two extreme cases. In the first case, we could have that $k \mapsto \bar{\ell}(k)$ is injective, in which case we can use weights. In the econd case, $f_{k} \neq 0 \leftrightarrow k=1, \ldots, N$ and $\bar{\ell}(k)=0$ for all $k=1, \ldots, N$. Then,

$$
\|T f\|_{q_{\theta}} \lesssim \sum_{k}\left\|T f_{k}\right\|_{q_{\theta}} \lesssim \sum_{k}\left|S_{k}(f)\right|^{1 / p_{\theta}} 2^{k},
$$

and we want this $\lesssim\left(\sum_{k}\left|S_{k}(f)\right| 2^{k p_{\theta}}\right)^{1 / p_{\theta}}$. But having $\bar{\ell}(k)=0$ for all $k=1, \ldots, N$ gives a formula for $\left|S_{k}(f)\right|$ and $\left|S_{k}(f)\right|^{1 / p_{\theta}} 2^{k}$ gives a geometric series. We get then that

$$
2^{\bar{\ell}}=\left(2^{k}\right)^{\alpha}\left|S_{k}(f)\right|^{\beta} .
$$

2 Calderon-Zygmund

Let's go back to the Calderon-Zygmund decomposition lemma. Let us state it again here:
Lemma 1. For $f \in C_{c}^{0}, \lambda>0$, we can decompose $f=b+s$, the sum of a balanced part and a small part, such that $\|b\|_{1}+\|s\|_{1} \lesssim\|f\|_{1}$ and $\|s\|_{\infty} \leq \lambda, b=\sum b_{j}$ where b_{j} are balanced for λ supported on disjoint Q_{j} and

$$
f_{Q_{j}} b_{j} \lesssim f_{Q_{j}} f \lesssim \lambda .
$$

Proof. We're going to use a Calderon-Zygmund iterated stopping time algorithm to construct Q_{j} and b_{j}. Start with a cubical grid in \mathbb{R}^{d} of side length s large and $f_{Q}|f|<\lambda$ in each cube.
[Call this point in the algorithm (A).] Now, consider each Q.
(i) If $f_{Q}|f|<\lambda$, subdivide Q into 2^{d} equally sized cubes and repeat this step (A) with each of the subdivided cubes.
(ii) If $f_{Q}|f| \geq \lambda$, add Q to the list of balanced cubes, call it Q_{j}, and let

$$
b_{j}=f \cdot \chi_{Q_{j}}-f_{Q_{j}} f
$$

Do not go back to (A) with this cube.

The output of the algorithm is $\left\{Q_{j}\right\}$ and a function b_{j} for each Q_{j}. Then, let

$$
b=\sum b_{j}, s=f-b
$$

		Q_{1}	
Q_{2}	Q_{3}		
			Q_{4}
	Q_{5}		

We can make some observations now. First,

$$
\lambda \leq f_{Q_{j}}|f|<2^{d} \lambda
$$

We also have some bound for s. If $x \notin \bigcup Q_{j}$, then

$$
|s(x)|=|f(x)| \leq \lambda .
$$

If $x \in Q_{j}$, then

$$
|s(x)|=\left|f(x)-b_{j}(x)\right|=\left|f_{Q_{j}} f\right| \leq f_{Q_{j}}|f| \leq 2^{d} \lambda,
$$

and so we have that

$$
\int_{\mathbb{R}^{d} \backslash \cup Q_{j}}|s|=\int_{\mathbb{R}^{d} \backslash \cup Q_{j}}|f| \leq\|f\|_{L^{1}}
$$

From this, we get that

$$
\int_{\cup Q_{j}}|s| \leq \int_{\cup Q_{j}}|f| \leq\|f\|_{L^{1}}
$$

so $\|s\|_{1} \leq\|f\|_{1}$. We also have bounds for the b_{j} :

$$
f_{Q_{j}}\left|b_{j}\right|=f_{Q_{j}}\left|f-f_{Q_{j}} f\right| \leq 2 \int_{Q_{j}}|f|
$$

and

$$
\int_{Q_{j}} b_{j}=\int_{Q_{j}} f-\int_{Q_{j}} f=0
$$

This lemma then helps us conclude part II of the proof of Calderon-Zygmund, since $V_{T f}(2 \lambda) \leq$ $V_{T s}(\lambda)+V_{T b}(\lambda)$. By the L^{2} bound $V_{T f}\left(\lambda \lesssim\|f\|_{1} \lambda^{-1}\right.$. We also have that

$$
\begin{aligned}
V_{T b}(\lambda) & \leq\left|\bigcup_{j} 2 Q_{j}\right|+\lambda^{-1} \int_{\mathbb{R}^{d} \backslash \cup 2 Q_{j}}|T b| \\
& \lesssim\left|\bigcup_{j} Q_{j}\right|+\sum_{j} \lambda^{-1} \int_{\mathbb{R}^{d} \backslash 2 Q_{j}}\left|T b_{j}\right| \\
& \lesssim\|f\|_{1} \lambda^{-1}+\lambda^{-1} \sum_{j}\left\|b_{j}\right\|_{1} \\
& \lesssim \lambda^{-1}\left(\|s\|_{1}+\|b\|_{1}\right) \\
& \lesssim \lambda^{-1}\|f\|_{1} .
\end{aligned}
$$

Part III: Interpolation. Since we have a weak L^{1} bound and a strong L^{2} bound, we can use Marcinkiewicz interpolation to get the bound $\|T f\|_{p} \lesssim\|f\|_{p}$ for $1<p \leq 2$.

MIT OpenCourseWare
http://ocw.mit.edu

18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis

 Spring 2016For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

