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Today, we’ll start the proof of the Calderon Zygmund theorem, which we recall here:

Theorem 1. If Tf = f ∗K on Rd, |K(x)| . |x|−d, |∂K(x)| . |x|−d−1,
´

K(x) = 0 for all r, thenSr

‖Tf‖p . ‖f‖p, 1 < p <∞.

This proof will be split into four parts, as discussed last class.

Part I: L2 bound. By Plancherel, we have that

‖ ∗ ‖ ‖ ˆ · ˆ ˆf K 2 = f K‖2 ≤ ‖K‖ · ‖ ˆ ˆf K∞ ‖2 = ‖ ‖∞ · ‖f‖2.

ˆSo it suffices to bound ‖K‖ . We have that∞
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We’ll also let
Aj := {x : 2j−1 ≤ |x| ≤ 2j}.

For small j, those such that |ω · 2j | ≤ 1, we have from
´

K(x) = 0 thatSr

|Ij | =

∣∣∣ˆ
K(x)(e−iωx

Aj

− 1) dx
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≤

∣∣
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ˆ
∣

Aj

|K(x)|

∣

∼ |ω · 2j |(2j)d · (2j)−d

∼ |ω · 2j |.

But now,
∑

ωwj I| |≤1 j is the sum of exponentially decreasing terms, and is therefore . 1. We

also have to worry about what happens for large j. For j such that |ω · 2j | > 1, we can choose
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` ∈ {1, 2, . . . , d} such that |ω`| & |ω| and integrate by parts to get that
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∣∣ˆ
K(x)e−iωx dx

Aj

∣∣∣∣ ∣
=

∣ ∣∣∣∣∣∣ˆ 1
∂ K · e−iωx

ˆ
∣ ` dx+ Ke−iωx

1

Aj
iω` ∂Aj

· dx
iω`

∣∣
+

∣
≤
ˆ

1

Aj

|∂K| · dx
ω

ˆ
1|K

∣∣
| | ∂Aj

| ·
|ω|

1
. |A j d 1 j d 1

j |(2 )− − · +
|ω

|∂A
| j | · (2 )− ·

ω

1∼ .
|2jω|

Again,

the whole

∑
I is bounded by an exponentially decaying series, and so this sum and therefore|ω2j |>1 j

sum . 1. This gives us the L2 bound that we wanted.

We note here that sometimes in the statement of Calderon Zygmund, the L2 bound ‖Tf‖2 . ‖f‖2
is taken to be a condition instead of

´
K(x) = 0.Sr

Part II: Weak L1 bound. We want to prove the statement

VTf (λ) . ‖f‖ 1
1λ
− . (1)

We will do this by breaking up the function f into a small part and a “balanced part”. Let us first
show that a weak L1 bound holds for “small” and “balanced” functions. We’ll start with small
functions.

Lemma 2. If ‖f‖∞ ≤ 10λ, then (1) holds.

Proof. This follows from the L2 estimate.

V (λ) ≤ ‖Tf‖2 · λ−2 2
Tf 2 . ‖f‖2 · λ−2 . ‖f‖1 · λ−1.

For example, if we had the function f = H · χBr for λ� H. Then, we would have that

|Tf(x)| . f ∗ |x|−d =: g.

And λ = H · rd ·R−d so Rd · λ ∼ H · rd ∼ ‖f‖L1 , and this bound makes sense.

Here’s another example where we couldn’t employ this reasoning. Let f = j χBj where Bj =
B(xj , r) and xj are spaces with spacing s in a large finite grid. Then, again, we would have that
|Tf | . |f ∗ |x|−d|, but it is an exercise to check that the right hand side is too

∑
big to get a bound

of the type that we want. Instead, we have to use that |Tf | � |f ∗ |x|−d| by cancellation.
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Lemma 3. If b(x) is “balanced for λ”, supp b ⊂ cube Q, −́ |b| = λ,
´
b = 0, then TQ Q | b(x)| ≤

λ · µ−d−1. Here, µs is the distance from x to Q and µ ≥ 2.

Q
s

µs

x

Proof. Note that

|Tb(x)| ≤
ˆ
|b| · |K(x− y| dy ∼ (µ · s)−d

ˆ
|b λ

Q Q
| ∼ · µ−d,

but we can do better than that. If y0 is the center of Q, then have that

|Tb(x) =

∣∣∣ˆ∣ b(y)K(x− y) dy∣ Q

∣∣
=
∣∣ˆ∣ b(y)(K(x− y)

∣
Q

−

∣
K(x− y0)) dy

∣∣
.

Now, since K(x− y)−K(x− y d 1
0) . s ·maxy∈Q

∣
|∂K(x− y)| . s · (µs)−

∣
− , we have that

|Tb(x)| . s · (µs)−d−1
ˆ
|b(y)| ∼ µ−d−1 · λ.

Lemma 4. If b =
∑
bj, bj balanced functions for λ, and each function bj is supported on Qj

disjoint sets, then VTb(λ) . ‖b‖1 · λ−1.

Proof. We have that ‖b‖1 ∼ λ
∑

j |Qj |. Let U :=
⋃

1
j 2Qj . Then, |U | . ‖b‖1 · λ− . So it suffices to

check that ‖Tb‖L1( d U) . ‖b‖1, and for this it suffices to check thatR ‖Tbj‖L1(Rd 2Qj) . b\ \ ‖ j‖1, since
then we would have that

‖Tb‖L1(Rd\U) ≤
∑
‖Tbj‖L1( TRd\U) ≤

∑
‖ bj‖L1(Rd\2Qj) .

j j

∑
j

‖bj‖1 = ‖f‖1,

since the bj have disjoint supports. But that ‖Tbj‖L1( d 2Qj) . ‖bj‖1 follows from integrating theR \
last lemma.

Our next step will be to decompose functions into balanced and small parts so we can use the above
results.

Lemma 5 (Calderon-Zygmund Decomposition Lemma)∑ . For all f ∈ C0
c , λ > 0, we can decompose

f = b+ s where ‖b‖1 + ‖s‖1 . ‖f‖1, ‖s‖L ≤ λ, b = bj where bj is balanced for λ and supported∞

on disjoint Qj, where −́ bjQj
. −́ fQj

. λ.
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We’ll prove this lemma next time, but we can first show that this lemma will imply part II of the
proof of CZ. Given this lemma, we would have that

VTf (2λ) ≤ V 1 1 1
Ts(λ) + VTb(λ) . ‖s‖1λ− + ‖b‖1λ− . ‖f‖1(2λ)− .

Let’s conclude today with an example of how we might split a function f into a small and a balanced
part. Let

f =
∑

χBj

j

where Bj = B(x d
j , 1) and xj are in a grid with spacing � 1, s− ≤ λ � 1. Then, we∑could choose

cubes Qj of width s centered at the xj such that −́ |f | ∼ λ. Then, we could let s =Qj j λχQj and

bj = χBj − λχQj .
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