18.156 Lecture Notes

April 13, 2015

trans. Jane Wang

Today, we'll start the proof of the Calderon Zygmund theorem, which we recall here:

Theorem 1. If Tf = f * K on \mathbb{R}^d , $|K(x)| \leq |x|^{-d}$, $|\partial K(x)| \leq |x|^{-d-1}$, $\int_{S_r} K(x) = 0$ for all r, then $\|Tf\|_p \leq \|f\|_p$, 1 .

This proof will be split into four parts, as discussed last class.

Part I: L^2 bound. By Plancherel, we have that

$$||f * K||_2 = ||\hat{f} \cdot \hat{K}||_2 \le ||\hat{K}||_{\infty} \cdot ||\hat{f}||_2 = ||\hat{K}||_{\infty} \cdot ||f||_2$$

So it suffices to bound $\|\hat{K}\|_{\infty}$. We have that

$$\begin{aligned} \hat{K}(\omega) &= \left| \int K(x) e^{-i\omega x} \, dx \right| \\ &\leq \sum_{j \in \mathbb{Z}} \left| \int_{2^{j-1} \leq |x| \leq 2^j} K(x) e^{-i\omega x} \, dx \right| \\ &=: \sum_{j \in \mathbb{Z}} I_j. \end{aligned}$$

We'll also let

$$A_j := \{ x : 2^{j-1} \le |x| \le 2^j \}.$$

For small j, those such that $|\omega \cdot 2^j| \le 1$, we have from $\int_{S_r} K(x) = 0$ that

$$|I_j| = \left| \int_{A_j} K(x) (e^{-i\omega x} - 1) \, dx \right|$$

$$\leq |\omega \cdot 2^j| \int_{A_j} |K(x)|$$

$$\sim |\omega \cdot 2^j| (2^j)^d \cdot (2^j)^{-d}$$

$$\sim |\omega \cdot 2^j|.$$

But now, $\sum_{|\omega w^j| \leq 1} I_j$ is the sum of exponentially decreasing terms, and is therefore ≤ 1 . We also have to worry about what happens for large j. For j such that $|\omega \cdot 2^j| > 1$, we can choose

 $\ell \in \{1, 2, \dots, d\}$ such that $|\omega_{\ell}| \gtrsim |\omega|$ and integrate by parts to get that

$$\begin{aligned} |I_j| &= \left| \int_{A_j} K(x) e^{-i\omega x} \, dx \right| \\ &= \left| \int_{A_j} \partial_\ell K \cdot \frac{1}{i\omega_\ell} e^{-i\omega x} \, dx + \int_{\partial A_j} K e^{-i\omega x} \cdot \frac{1}{i\omega_\ell} \, dx \right| \\ &\leq \int_{A_j} |\partial K| \cdot \frac{1}{|\omega|} \, dx + \int_{\partial A_j} |K| \cdot \frac{1}{|\omega|} \\ &\lesssim |A_j| (2^j)^{-d-1} \cdot \frac{1}{|\omega|} + |\partial A_j| \cdot (2^j)^{-d} \cdot \frac{1}{\omega} \\ &\sim \frac{1}{|2^j \omega|}. \end{aligned}$$

Again, $\sum_{|\omega 2^j|>1} I_j$ is bounded by an exponentially decaying series, and so this sum and therefore the whole sum ≤ 1 . This gives us the L^2 bound that we wanted.

We note here that sometimes in the statement of Calderon Zygmund, the L^2 bound $||Tf||_2 \leq ||f||_2$ is taken to be a condition instead of $\int_{S_r} K(x) = 0$.

Part II: Weak L^1 bound. We want to prove the statement

$$V_{Tf}(\lambda) \lesssim \|f\|_1 \lambda^{-1}.$$
 (1)

We will do this by breaking up the function f into a small part and a "balanced part". Let us first show that a weak L^1 bound holds for "small" and "balanced" functions. We'll start with small functions.

Lemma 2. If $||f||_{\infty} \leq 10\lambda$, then (1) holds.

Proof. This follows from the L^2 estimate.

$$V_{Tf}(\lambda) \le \|Tf\|_2^2 \cdot \lambda^{-2} \lesssim \|f\|_2^2 \cdot \lambda^{-2} \lesssim \|f\|_1 \cdot \lambda^{-1}.$$

For example, if we had the function $f = H \cdot \chi_{B_r}$ for $\lambda \ll H$. Then, we would have that

$$|Tf(x)| \lesssim f * |x|^{-d} =: g$$

And $\lambda = H \cdot r^d \cdot R^{-d}$ so $R^d \cdot \lambda \sim H \cdot r^d \sim ||f||_{L^1}$, and this bound makes sense.

Here's another example where we couldn't employ this reasoning. Let $f = \sum_j \chi_{B_j}$ where $B_j = B(x_j, r)$ and x_j are spaces with spacing s in a large finite grid. Then, again, we would have that $|Tf| \leq |f * |x|^{-d}|$, but it is an exercise to check that the right hand side is too big to get a bound of the type that we want. Instead, we have to use that $|Tf| \ll |f * |x|^{-d}|$ by cancellation.

Lemma 3. If b(x) is "balanced for λ ", supp $b \subset$ cube Q, $\oint_Q |b| = \lambda$, $\int_Q b = 0$, then $|Tb(x)| \leq \lambda \cdot \mu^{-d-1}$. Here, μs is the distance from x to Q and $\mu \geq 2$.

Proof. Note that

$$|Tb(x)| \le \int_Q |b| \cdot |K(x-y)| \, dy \sim (\mu \cdot s)^{-d} \int_Q |b| \sim \lambda \cdot \mu^{-d},$$

but we can do better than that. If y_0 is the center of Q, then have that

$$Tb(x) = \left| \int_Q b(y) K(x-y) \, dy \right|$$
$$= \left| \int_Q b(y) (K(x-y) - K(x-y_0)) \, dy \right|$$

Now, since $K(x-y) - K(x-y_0) \lesssim s \cdot \max_{y \in Q} |\partial K(x-y)| \lesssim s \cdot (\mu s)^{-d-1}$, we have that

$$|Tb(x)| \lesssim s \cdot (\mu s)^{-d-1} \int |b(y)| \sim \mu^{-d-1} \cdot \lambda.$$

Lemma 4. If $b = \sum b_j$, b_j balanced functions for λ , and each function b_j is supported on Q_j disjoint sets, then $V_{Tb}(\lambda) \leq \|b\|_1 \cdot \lambda^{-1}$.

Proof. We have that $\|b\|_1 \sim \lambda \sum_j |Q_j|$. Let $U := \bigcup_j 2Q_j$. Then, $|U| \lesssim \|b\|_1 \cdot \lambda^{-1}$. So it suffices to check that $\|Tb\|_{L^1(\mathbb{R}^d \setminus U)} \lesssim \|b\|_1$, and for this it suffices to check that $\|Tb_j\|_{L^1(\mathbb{R}^d \setminus 2Q_j)} \lesssim \|b_j\|_1$, since then we would have that

$$\|Tb\|_{L^{1}(\mathbb{R}^{d}\setminus U)} \leq \sum_{j} \|Tb_{j}\|_{L^{1}(\mathbb{R}^{d}\setminus U)} \leq \sum_{j} \|Tb_{j}\|_{L^{1}(\mathbb{R}^{d}\setminus 2Q_{j})} \lesssim \sum_{j} \|b_{j}\|_{1} = \|f\|_{1}$$

since the b_j have disjoint supports. But that $||Tb_j||_{L^1(\mathbb{R}^d \setminus 2Q_j)} \leq ||b_j||_1$ follows from integrating the last lemma.

Our next step will be to decompose functions into balanced and small parts so we can use the above results.

Lemma 5 (Calderon-Zygmund Decomposition Lemma). For all $f \in C_c^0$, $\lambda > 0$, we can decompose f = b + s where $||b||_1 + ||s||_1 \leq ||f||_1$, $||s||_{L_{\infty}} \leq \lambda$, $b = \sum b_j$ where b_j is balanced for λ and supported on disjoint Q_j , where $\oint_{Q_j} b_j \leq \oint_{Q_j} f \leq \lambda$.

We'll prove this lemma next time, but we can first show that this lemma will imply part II of the proof of CZ. Given this lemma, we would have that

$$V_{Tf}(2\lambda) \le V_{Ts}(\lambda) + V_{Tb}(\lambda) \lesssim \|s\|_1 \lambda^{-1} + \|b\|_1 \lambda^{-1} \lesssim \|f\|_1 (2\lambda)^{-1}.$$

Let's conclude today with an example of how we might split a function f into a small and a balanced part. Let

$$f = \sum_{j} \chi_{B_j}$$

where $B_j = B(x_j, 1)$ and x_j are in a grid with spacing $\gg 1$, $s^{-d} \leq \lambda \ll 1$. Then, we could choose cubes Q_j of width s centered at the x_j such that $f_{Q_j} |f| \sim \lambda$. Then, we could let $s = \sum_j \lambda \chi_{Q_j}$ and $b_j = \chi_{B_j} - \lambda \chi_{Q_j}$.

18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.