18.156 Lecture Notes

April 13, 2015

trans. Jane Wang

Today, we'll start the proof of the Calderon Zygmund theorem, which we recall here:
Theorem 1. If $T f=f * K$ on $\mathbb{R}^{d},|K(x)| \lesssim|x|^{-d},|\partial K(x)| \lesssim|x|^{-d-1}, \int_{S_{r}} K(x)=0$ for all r, then $\|T f\|_{p} \lesssim\|f\|_{p}, 1<p<\infty$.

This proof will be split into four parts, as discussed last class.
Part I: L^{2} bound. By Plancherel, we have that

$$
\|f * K\|_{2}=\|\hat{f} \cdot \hat{K}\|_{2} \leq\|\hat{K}\|_{\infty} \cdot\|\hat{f}\|_{2}=\|\hat{K}\|_{\infty} \cdot\|f\|_{2}
$$

So it suffices to bound $\|\hat{K}\|_{\infty}$. We have that

$$
\begin{aligned}
|\hat{K}(\omega)| & =\left|\int K(x) e^{-i \omega x} d x\right| \\
& \leq \sum_{j \in \mathbb{Z}}\left|\int_{2^{j-1} \leq|x| \leq 2^{j}} K(x) e^{-i \omega x} d x\right| \\
& =: \sum_{j \in \mathbb{Z}} I_{j} .
\end{aligned}
$$

We'll also let

$$
A_{j}:=\left\{x: 2^{j-1} \leq|x| \leq 2^{j}\right\} .
$$

For small j, those such that $\left|\omega \cdot 2^{j}\right| \leq 1$, we have from $\int_{S_{r}} K(x)=0$ that

$$
\begin{aligned}
\left|I_{j}\right| & =\left|\int_{A_{j}} K(x)\left(e^{-i \omega x}-1\right) d x\right| \\
& \leq\left|\omega \cdot 2^{j}\right| \int_{A_{j}}|K(x)| \\
& \sim\left|\omega \cdot 2^{j}\right|\left(2^{j}\right)^{d} \cdot\left(2^{j}\right)^{-d} \\
& \sim\left|\omega \cdot 2^{j}\right| .
\end{aligned}
$$

But now, $\sum_{\left|\omega w^{j}\right| \leq 1} I_{j}$ is the sum of exponentially decreasing terms, and is therefore $\lesssim 1$. We also have to worry about what happens for large j. For j such that $\left|\omega \cdot 2^{j}\right|>1$, we can choose
$\ell \in\{1,2, \ldots, d\}$ such that $\left|\omega_{\ell}\right| \gtrsim|\omega|$ and integrate by parts to get that

$$
\begin{aligned}
\left|I_{j}\right| & =\left|\int_{A_{j}} K(x) e^{-i \omega x} d x\right| \\
& =\left|\int_{A_{j}} \partial_{\ell} K \cdot \frac{1}{i \omega_{\ell}} e^{-i \omega x} d x+\int_{\partial A_{j}} K e^{-i \omega x} \cdot \frac{1}{i \omega_{\ell}} d x\right| \\
& \leq \int_{A_{j}}|\partial K| \cdot \frac{1}{|\omega|} d x+\int_{\partial A_{j}}|K| \cdot \frac{1}{|\omega|} \\
& \lesssim\left|A_{j}\right|\left(2^{j}\right)^{-d-1} \cdot \frac{1}{|\omega|}+\left|\partial A_{j}\right| \cdot\left(2^{j}\right)^{-d} \cdot \frac{1}{\omega} \\
& \sim \frac{1}{\left|2^{j} \omega\right|} .
\end{aligned}
$$

Again, $\sum_{\left|\omega 2^{j}\right|>1} I_{j}$ is bounded by an exponentially decaying series, and so this sum and therefore the whole sum $\lesssim 1$. This gives us the L^{2} bound that we wanted.

We note here that sometimes in the statement of Calderon Zygmund, the L^{2} bound $\|T f\|_{2} \lesssim\|f\|_{2}$ is taken to be a condition instead of $\int_{S_{r}} K(x)=0$.

Part II: Weak L^{1} bound. We want to prove the statement

$$
\begin{equation*}
V_{T f}(\lambda) \lesssim\|f\|_{1} \lambda^{-1} \tag{1}
\end{equation*}
$$

We will do this by breaking up the function f into a small part and a "balanced part". Let us first show that a weak L^{1} bound holds for "small" and "balanced" functions. We'll start with small functions.

Lemma 2. If $\|f\|_{\infty} \leq 10 \lambda$, then (1) holds.

Proof. This follows from the L^{2} estimate.

$$
V_{T f}(\lambda) \leq\|T f\|_{2}^{2} \cdot \lambda^{-2} \lesssim\|f\|_{2}^{2} \cdot \lambda^{-2} \lesssim\|f\|_{1} \cdot \lambda^{-1}
$$

For example, if we had the function $f=H \cdot \chi_{B_{r}}$ for $\lambda \ll H$. Then, we would have that

$$
|T f(x)| \lesssim f *|x|^{-d}=: g
$$

And $\lambda=H \cdot r^{d} \cdot R^{-d}$ so $R^{d} \cdot \lambda \sim H \cdot r^{d} \sim\|f\|_{L^{1}}$, and this bound makes sense.
Here's another example where we couldn't employ this reasoning. Let $f=\sum_{j} \chi_{B_{j}}$ where $B_{j}=$ $B\left(x_{j}, r\right)$ and x_{j} are spaces with spacing s in a large finite grid. Then, again, we would have that $\left.|T f| \lesssim|f *| x\right|^{-d} \mid$, but it is an exercise to check that the right hand side is too big to get a bound of the type that we want. Instead, we have to use that $\left.|T f| \ll|f *| x\right|^{-d} \mid$ by cancellation.

Lemma 3. If $b(x)$ is "balanced for λ ", supp $b \subset$ cube $Q, f_{Q}|b|=\lambda, \int_{Q} b=0$, then $|T b(x)| \leq$ $\lambda \cdot \mu^{-d-1}$. Here, μs is the distance from x to Q and $\mu \geq 2$.

Proof. Note that

$$
|T b(x)| \leq \int_{Q}|b| \cdot \mid K\left(x-y\left|d y \sim(\mu \cdot s)^{-d} \int_{Q}\right| b \mid \sim \lambda \cdot \mu^{-d}\right.
$$

but we can do better than that. If y_{0} is the center of Q, then have that

$$
\begin{aligned}
\mid T b(x) & =\left|\int_{Q} b(y) K(x-y) d y\right| \\
& =\left|\int_{Q} b(y)\left(K(x-y)-K\left(x-y_{0}\right)\right) d y\right|
\end{aligned}
$$

Now, since $K(x-y)-K\left(x-y_{0}\right) \lesssim s \cdot \max _{y \in Q}|\partial K(x-y)| \lesssim s \cdot(\mu s)^{-d-1}$, we have that

$$
|T b(x)| \lesssim s \cdot(\mu s)^{-d-1} \int|b(y)| \sim \mu^{-d-1} \cdot \lambda
$$

Lemma 4. If $b=\sum b_{j}$, b_{j} balanced functions for λ, and each function b_{j} is supported on Q_{j} disjoint sets, then $V_{T b}(\lambda) \lesssim\|b\|_{1} \cdot \lambda^{-1}$.

Proof. We have that $\|b\|_{1} \sim \lambda \sum_{j}\left|Q_{j}\right|$. Let $U:=\bigcup_{j} 2 Q_{j}$. Then, $|U| \lesssim\|b\|_{1} \cdot \lambda^{-1}$. So it suffices to check that $\|T b\|_{L^{1}\left(\mathbb{R}^{d} \backslash U\right)} \lesssim\|b\|_{1}$, and for this it suffices to check that $\left\|T b_{j}\right\|_{L^{1}\left(\mathbb{R}^{d} \backslash 2 Q_{j}\right)} \lesssim\left\|b_{j}\right\|_{1}$, since then we would have that

$$
\|T b\|_{L^{1}\left(\mathbb{R}^{d} \backslash U\right)} \leq \sum_{j}\left\|T b_{j}\right\|_{L^{1}\left(\mathbb{R}^{d} \backslash U\right)} \leq \sum_{j}\left\|T b_{j}\right\|_{L^{1}\left(\mathbb{R}^{d} \backslash 2 Q_{j}\right)} \lesssim \sum_{j}\left\|b_{j}\right\|_{1}=\|f\|_{1}
$$

since the b_{j} have disjoint supports. But that $\left\|T b_{j}\right\|_{L^{1}\left(\mathbb{R}^{d} \backslash 2 Q_{j}\right)} \lesssim\left\|b_{j}\right\|_{1}$ follows from integrating the last lemma.

Our next step will be to decompose functions into balanced and small parts so we can use the above results.

Lemma 5 (Calderon-Zygmund Decomposition Lemma). For all $f \in C_{c}^{0}, \lambda>0$, we can decompose $f=b+s$ where $\|b\|_{1}+\|s\|_{1} \lesssim\|f\|_{1},\|s\|_{L_{\infty}} \leq \lambda, b=\sum b_{j}$ where b_{j} is balanced for λ and supported on disjoint Q_{j}, where $f_{Q_{j}} b_{j} \lesssim f_{Q_{j}} f \lesssim \lambda$.

We'll prove this lemma next time, but we can first show that this lemma will imply part II of the proof of CZ. Given this lemma, we would have that

$$
V_{T f}(2 \lambda) \leq V_{T s}(\lambda)+V_{T b}(\lambda) \lesssim\|s\|_{1} \lambda^{-1}+\|b\|_{1} \lambda^{-1} \lesssim\|f\|_{1}(2 \lambda)^{-1} .
$$

Let's conclude today with an example of how we might split a function f into a small and a balanced part. Let

$$
f=\sum_{j} \chi_{B_{j}}
$$

where $B_{j}=B\left(x_{j}, 1\right)$ and x_{j} are in a grid with spacing $\gg 1, s^{-d} \leq \lambda \ll 1$. Then, we could choose cubes Q_{j} of width s centered at the x_{j} such that $f_{Q_{j}}|f| \sim \lambda$. Then, we could let $s=\sum_{j} \lambda \chi_{Q_{j}}$ and $b_{j}=\chi_{B_{j}}-\lambda \chi_{Q_{j}}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis

 Spring 2016For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

