18.156 Lecture Notes

March 9, 2015
trans. Jane Wang

Let us first recall what we did last time. Last time, we considered $u \in C^{2, \alpha}\left(B_{1}\right)$ and defined

$$
N u=\left(\Delta u-u^{3},\left.u\right|_{\partial B_{1}}\right),
$$

where $N: C^{2, \alpha}\left(\overline{B_{1}}\right) \rightarrow C^{\alpha}\left(\overline{B_{1}}\right) \oplus C^{2, \alpha}\left(\partial B_{1}\right)$. We'll call these spaces X and Y, so $N: X \rightarrow Y$. We'll also denote B_{1} as B.

Then, N is a C^{1} map,

$$
d N_{u}(v)=\left(\Delta v-3 u^{2} v,\left.v\right|_{\partial B}\right)
$$

is an isomorphism $X \rightarrow Y$ for all $u \in X$. And as a corollary of the inverse function theorem, if $F: X \rightarrow Y$ is C^{1} and $d F_{x}$ is an isomorphism, then the image of F contains a neighborhood of $F(x)$.

Proposition 1. If $u \in C^{2}(\bar{B})$, and $N u=(f, \varphi)$, then
(i) $\|u\|_{C^{0}} \leq\|\varphi\|_{C^{0}}+\|f\|_{C^{0}}$
(ii) $\|u\|_{C^{2, \alpha}(B)} \leq g\left(\|f\|_{C^{\alpha}}+\|\varphi\|_{C^{2, \alpha}}\right)$

An idea to prove (ii) is to first use global Schauder to get that

$$
\begin{aligned}
\|u\|_{C^{2, \alpha}(\bar{B})} & \lesssim\|\Delta u\|_{C^{\alpha}(B)}+\|\varphi\|_{C^{2, \alpha}(\partial B)} \\
& \leq\left\|u^{3}\right\|_{C^{\alpha}}+\|f\|_{C^{\alpha}}+\|\varphi\|_{C^{2, \alpha}} .
\end{aligned}
$$

Then, we might try to use that

$$
\left\|u^{3}\right\|_{C^{\alpha}} \leq\|u\|_{C^{\alpha}}^{3} \leq\left(\epsilon\|u\|_{C^{2, \alpha}}+C_{\epsilon}\|u\|_{C^{0}}\right)^{3}
$$

and rearrange. But we have an exponent of 3, so this doesn't quite work. Instead, we take the inequality $\|f g\|_{C^{\alpha}} \leq\|f\|_{C^{0}}\|g\|_{C^{\alpha}}+\|f\|_{C^{\alpha}}\|g\|_{C^{0}}$ and we have

$$
\left\|u^{3}\right\|_{C^{\alpha}} \lesssim\|u\|_{C^{0}}^{2}\|u\|_{C^{\alpha}} \leq\|u\|_{C^{0}}^{2}\left(\epsilon\|u\|_{C^{2, \alpha}}+C_{\epsilon}\|u\|_{C^{0}}\right)
$$

and now we can use rearrangement and the maximum principle to get the bounds that we want.
Theorem 2. N is surjective from $X \rightarrow Y$.

Proof. Given $(f, \varphi) \in Y$, define

$$
S O L:=\left\{t \in[0,1]:(t f, t \varphi) \in N\left(C^{2, \alpha}(B)\right)\right\} .
$$

We want to show that $1 \in S O L$. We already know that $0 \in S O L$, so it will suffice to show that $S O L$ is open and closed. $S O L$ is open since if $N u=\left(t_{0} f, t_{0} \varphi\right)$, that $d N_{u}$ is an isomorphism gives us that $N\left(C^{2, \alpha}(B)\right)$ contains a neighborhood of $\left(t_{0} f, t_{0} \varphi\right)$.

To show that $S O L$ is closed, suppose that $t_{j} \in S O L$ and $t_{j} \rightarrow t_{\infty}$, and $N u_{j}=\left(t_{j} f, t_{j} \varphi\right)$. By the proposition, $\left\|u_{j}\right\|_{C^{2, \alpha}} \leq C$ uniformly in B. By the Arzela-Ascoli theorem, $u_{j} \rightarrow u_{\infty}$ in C^{2} for a subsequence. And $N u_{\infty}=\lim N u_{j}=(f, \varphi)$. But

$$
\left\|u_{\infty}\right\|_{C^{2, \alpha}} \leq \lim \sup \left\|u_{j}\right\|_{C^{2, \alpha}} \leq C
$$

so the limit is in $C^{2, \alpha}$. (We notice here that this does not say that $u_{j} \rightarrow u_{\infty}$ in $C^{2, \alpha}$, but says that $u_{j} \rightarrow u_{\infty}$ in C^{2} and the limit is in $C^{2, \alpha}$, which is good enough for our purposes.

Question: if $\Delta u=0$ on $B, u=\varphi$ on ∂B, then is $\|u\|_{C^{1}(B)} \lesssim\|\varphi\|_{C^{1}(\partial B)}$?
Here's a proof idea that doesn't quite work. We know that $\Delta \partial_{i} u=\partial_{i} \Delta u=0$, so $\partial_{i} u$ obeys the maximal principle. We want to say now that

$$
\left\|\partial_{i} u\right\|_{C^{0}} \leq\left\|\partial_{i} \varphi\right\|_{C^{0}} \leq\|\varphi\|_{C^{1}(\partial B)}
$$

but the first inequality does not hold since φ does not have derivatives in as many directions as u does (it is missing the directions normal to ∂B). This idea of bounding the derivatives in the normal direction will be important later on.

Next examples:
(i) $\Delta u-|\nabla u|^{2}=0$: this has good global regularity and we can solve the Dirichlet problem.
(ii) $\Delta u-|\nabla u|^{4}=0$: this has no global regularity and we can't solve the Dirichlet problem.

Let us look at why the second case is bad. Take $n=1$. Then, we are looking for solutions to

$$
u^{\prime \prime}-\left(u^{\prime}\right)^{4}=0
$$

If we take $w=u^{\prime}$, then we want to solve $w^{\prime}=w^{4}$. So $w^{-4} w^{\prime}=1$. But $\left(w^{-3}\right)^{\prime}=-3 w^{-4} w^{\prime}=-3$. From this, we get that $w(x)^{-3}=w(0)^{-3}-3 x$ and we have tat

$$
w(x)=\left(w(0)^{-3}-3 x\right)^{-1 / 3} .
$$

Now suppose that we want to solve $u(0)=0$ and $u(1 / 3)=b$. For $0 \leq b<H$, this is solvable but for $b>H$, this is not solvable. We notice that if $b \rightarrow H$, then then the norm of the boundary data
(the maximum of the values of the two points) is uniformly bounded, but $\left|u^{\prime}(1 / 3)\right| \rightarrow \infty$, and this is what causes our problem.

Key Estimate: If $u \in C^{2}(\bar{\Omega}), \Delta u-|\nabla u|^{2}=0, u=\varphi$ on $\partial \Omega$, then

$$
\left\|\partial_{n o r} u\right\|_{C^{0}(\partial \Omega)} \leq C(\Omega)\|\varphi\|_{C^{2}(\partial \Omega)}
$$

(Note: this also gives us that $\|\partial u\|_{C^{0}(\partial \Omega)} \leq C(\Omega)\|\varphi\|_{C^{2}(\partial \Omega)}$.)
Proof Sketch: We want to construct $B: N \rightarrow \mathbb{R}$ such that
(i) $B\left(x_{0}\right)=u\left(x_{0}\right)$
(ii) $B \geq u$ on ∂N
(iii) $\Delta B-|\nabla B|^{2}<0$
(ii) and (iii) together will imply that $B \geq u$ on N. Then, $\partial_{\text {nor }} u\left(x_{0}\right) \leq \partial_{\text {nor }} B\left(x_{0}\right)$.

Proposition 3 (Comparison Principle). If

$$
Q u=\sum_{i, j} a_{i j}(\nabla u) \partial_{i} \partial_{j} u+b(\nabla u)
$$

is a quasilinear elliptic $P D E$, where $a_{i j}$ are positive definite and $a, b \in C^{1}$ of ∇u, then if $u, w \in$ $C^{2}(\bar{\Omega}), u \leq w$ on $\partial \Omega, Q u \geq Q w$ on Ω, then $u \leq w$ on Ω

Proof of strict case. We want to show that $u-w \leq 0$ on Ω given that $u-w \leq 0$ on $\partial \Omega$ and $Q(u-w)>0$. Suppose x_{0} is an interior maximum. Then, $\nabla u\left(x_{0}\right)=\nabla w\left(x_{0}\right)=v_{0}$. Then,

$$
\sum_{i, j} a_{i j}\left(v_{0}\right) \partial_{i} \partial_{j}(u-w)\left(x_{0}\right)>0
$$

but this is impossible at a local maximum.

MIT OpenCourseWare
http://ocw.mit.edu

18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis

 Spring 2016For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

