18.156 Lecture Notes

March 9, 2015

trans. Jane Wang

Let us first recall what we did last time. Last time, we considered $u \in C^{2,\alpha}(B_1)$ and defined

$$Nu = (\Delta u - u^3, u|_{\partial B_1}),$$

where $N: C^{2,\alpha}(\overline{B_1}) \to C^{\alpha}(\overline{B_1}) \oplus C^{2,\alpha}(\partial B_1)$. We'll call these spaces X and Y, so $N: X \to Y$. We'll also denote B_1 as B.

Then, N is a C^1 map,

$$dN_u(v) = (\Delta v - 3u^2 v, v|_{\partial B})$$

is an isomorphism $X \to Y$ for all $u \in X$. And as a corollary of the inverse function theorem, if $F: X \to Y$ is C^1 and dF_x is an isomorphism, then the image of F contains a neighborhood of F(x).

Proposition 1. If $u \in C^2(\overline{B})$, and $Nu = (f, \varphi)$, then

- (i) $||u||_{C^0} \le ||\varphi||_{C^0} + ||f||_{C^0}$
- (*ii*) $||u||_{C^{2,\alpha}(B)} \le g(||f||_{C^{\alpha}} + ||\varphi||_{C^{2,\alpha}})$

An idea to prove (ii) is to first use global Schauder to get that

$$\begin{aligned} \|u\|_{C^{2,\alpha}(\overline{B})} &\lesssim \|\Delta u\|_{C^{\alpha}(B)} + \|\varphi\|_{C^{2,\alpha}(\partial B)} \\ &\leq \|u^3\|_{C^{\alpha}} + \|f\|_{C^{\alpha}} + \|\varphi\|_{C^{2,\alpha}}. \end{aligned}$$

Then, we might try to use that

$$\|u^3\|_{C^{\alpha}} \le \|u\|_{C^{\alpha}}^3 \le (\epsilon \|u\|_{C^{2,\alpha}} + C_{\epsilon} \|u\|_{C^0})^3$$

and rearrange. But we have an exponent of 3, so this doesn't quite work. Instead, we take the inequality $||fg||_{C^{\alpha}} \leq ||f||_{C^0} ||g||_{C^{\alpha}} + ||f||_{C^{\alpha}} ||g||_{C^0}$ and we have

$$\|u^3\|_{C^{\alpha}} \lesssim \|u\|_{C^0}^2 \|u\|_{C^{\alpha}} \le \|u\|_{C^0}^2 (\epsilon \|u\|_{C^{2,\alpha}} + C_{\epsilon} \|u\|_{C^0})$$

and now we can use rearrangement and the maximum principle to get the bounds that we want.

Theorem 2. N is surjective from $X \to Y$.

Proof. Given $(f, \varphi) \in Y$, define

$$SOL := \{ t \in [0,1] : (tf, t\varphi) \in N(C^{2,\alpha}(B)) \}.$$

We want to show that $1 \in SOL$. We already know that $0 \in SOL$, so it will suffice to show that SOL is open and closed. SOL is open since if $Nu = (t_0 f, t_0 \varphi)$, that dN_u is an isomorphism gives us that $N(C^{2,\alpha}(B))$ contains a neighborhood of $(t_0 f, t_0 \varphi)$.

To show that SOL is closed, suppose that $t_j \in SOL$ and $t_j \to t_{\infty}$, and $Nu_j = (t_j f, t_j \varphi)$. By the proposition, $\|u_j\|_{C^{2,\alpha}} \leq C$ uniformly in B. By the Arzela-Ascoli theorem, $u_j \to u_{\infty}$ in C^2 for a subsequence. And $Nu_{\infty} = \lim Nu_j = (f, \varphi)$. But

$$||u_{\infty}||_{C^{2,\alpha}} \leq \limsup ||u_j||_{C^{2,\alpha}} \leq C_{j}$$

so the limit is in $C^{2,\alpha}$. (We notice here that this does not say that $u_j \to u_\infty$ in $C^{2,\alpha}$, but says that $u_j \to u_\infty$ in C^2 and the limit is in $C^{2,\alpha}$, which is good enough for our purposes.

Question: if $\Delta u = 0$ on B, $u = \varphi$ on ∂B , then is $||u||_{C^1(B)} \lesssim ||\varphi||_{C^1(\partial B)}$?

Here's a proof idea that doesn't quite work. We know that $\Delta \partial_i u = \partial_i \Delta u = 0$, so $\partial_i u$ obeys the maximal principle. We want to say now that

$$\|\partial_i u\|_{C^0} \le \|\partial_i \varphi\|_{C^0} \le \|\varphi\|_{C^1(\partial B)},$$

but the first inequality does not hold since φ does not have derivatives in as many directions as u does (it is missing the directions normal to ∂B). This idea of bounding the derivatives in the normal direction will be important later on.

Next examples:

- (i) $\Delta u |\nabla u|^2 = 0$: this has good global regularity and we can solve the Dirichlet problem.
- (ii) $\Delta u |\nabla u|^4 = 0$: this has no global regularity and we can't solve the Dirichlet problem.

Let us look at why the second case is bad. Take n = 1. Then, we are looking for solutions to

$$u'' - (u')^4 = 0.$$

If we take w = u', then we want to solve $w' = w^4$. So $w^{-4}w' = 1$. But $(w^{-3})' = -3w^{-4}w' = -3$. From this, we get that $w(x)^{-3} = w(0)^{-3} - 3x$ and we have tat

$$w(x) = (w(0)^{-3} - 3x)^{-1/3}.$$

Now suppose that we want to solve u(0) = 0 and u(1/3) = b. For $0 \le b < H$, this is solvable but for b > H, this is not solvable. We notice that if $b \to H$, then then the norm of the boundary data (the maximum of the values of the two points) is uniformly bounded, but $|u'(1/3)| \to \infty$, and this is what causes our problem.

Key Estimate: If $u \in C^2(\overline{\Omega})$, $\Delta u - |\nabla u|^2 = 0$, $u = \varphi$ on $\partial \Omega$, then

 $\|\partial_{nor} u\|_{C^0(\partial\Omega)} \le C(\Omega) \|\varphi\|_{C^2(\partial\Omega)}.$

(Note: this also gives us that $\|\partial u\|_{C^0(\partial\Omega)} \leq C(\Omega) \|\varphi\|_{C^2(\partial\Omega)}$.)

Proof Sketch: We want to construct $B: N \to \mathbb{R}$ such that

- (i) $B(x_0) = u(x_0)$
- (ii) $B \ge u$ on ∂N
- (iii) $\Delta B |\nabla B|^2 < 0$

(ii) and (iii) together will imply that $B \ge u$ on N. Then, $\partial_{nor}u(x_0) \le \partial_{nor}B(x_0)$.

Proposition 3 (Comparison Principle). If

$$Qu = \sum_{i,j} a_{ij}(\nabla u)\partial_i\partial_j u + b(\nabla u)$$

is a quasilinear elliptic PDE, where a_{ij} are positive definite and $a, b \in C^1$ of ∇u , then if $u, w \in C^2(\overline{\Omega})$, $u \leq w$ on $\partial\Omega$, $Qu \geq Qw$ on Ω , then $u \leq w$ on Ω

Proof of strict case. We want to show that $u - w \leq 0$ on Ω given that $u - w \leq 0$ on $\partial\Omega$ and Q(u - w) > 0. Suppose x_0 is an interior maximum. Then, $\nabla u(x_0) = \nabla w(x_0) = v_0$. Then,

$$\sum_{i,j} a_{ij}(v_0)\partial_i\partial_j(u-w)(x_0) > 0.$$

but this is impossible at a local maximum.

18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.