
Lecture notes for class on Friday March 6

1. Non-linear elliptic PDE

We now begin to study non-linear elliptic PDE. We begin here with one of the
simplest examples, the equation 4u − u3 = 0. We will solve the Dirichlet problem
for this equation, and along the way we will prove regularity estimates. To formulate
the Dirichlet problem, we consider the following (non-linear!) map.

N : C2,α(B1)→ Cα(B1)⊕ C2,α(∂B1),

Nu :=
(
4u− u3, u|∂B1

W

)
.

e also let α ∈ (0, 1) denote a Holder exponent.

Theorem 1. The map N is surjective. In particular, for any φ ∈ C2,α(∂B1), there
is a function u ∈ C2,α(B1) so that 4u− u3 = 0, and u|∂B1 = φ.

By contrast, the equation 4u + u3 = 0 is not well-behaved. It is impossible to
solve the Dirichlet problem for this equation. Although, we won’t rigorously prove
this, we will explain why the equations are different.

Along the way we will also prove regularity estimates for solutions of the equation
4u − u3 = 0, and we will see how regularity estimates are crucial to proving the
existence of solutions.

2. Functional analysis setup

In this section we review some functional analysis that we will use to prove Theo-
rem 1.

We let X denote the Banach space C2,α(B1) and we let Y denote the Banach space
Cα(B1) ⊕ C2,α(∂B1), so N : X → Y . We will show that N is a C1 map from X to
Y and compute its derivative. Let us first recall what this means.

For any Banach spaces X, Y , a map F : X → Y is differentiable at a point x ∈ X
if there is some (bounded) linear map L : X → Y so that

‖F (x+ h)− F (x)− L(h)‖Y = o(‖h‖X) as ‖h‖X → 0.

The map L is unique, and we write dF := L. The map F is C1
x if it is differentiable

at each point, and if the derivative dFx is continuous in x. (The map dFx sends
X to the space Hom(X, Y ) of bounded linear operators from X to Y . The space
Hom(X, Y ) is equipped with the operator norm, making it a normed space. We use
this norm when we speak of dFx being continuous.)
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Proposition 2. The map N : X → Y is C1 and its derivative is given as follows:

dNu(v) = Lu := (4v − 3u2v, v|∂B1).

Remark. We can find the formula for dN 3
u by “formally” differentiating 4u− u .

I.e. we write 4(u + εv) − 3(u + εv)3, and we keep the terms of degree 1 in ε. This
yields the formula above, but it doesn’t immediately prove that N is differentiable
at u with derivative Lu.

Proof. To show that N is differentiable at u ∈ X with derivative Lu, it suffices to
check that

‖N(u+ v)−N(u)− Lu(v)‖Y = o(‖v‖X).

The left-hand side works out to

(−3uv2 − v3, 0).

We have to bound

‖(−3uv2 − v3, 0)‖Y = ‖3uv2 + v3‖Cα(B1).

We note that ‖fg‖Cα ≤ ‖f‖Cα‖g
α

‖Cα . (Recall that ‖f‖Cα := [f ]Cα + ‖f‖C0 , and
use the Liebniz rule [fg]C ≤ ‖f‖C0 [g]Cα + [f ]Cα‖g‖C0 .) Therefore,

‖3uv2 + v3‖Cα(B1) . ‖u‖ 2
Cα‖v‖Cα + ‖v‖3Cα ≤ ‖u‖ 2

X‖v‖X + ‖v‖3X = o(‖v‖X).

�

Next, we bring into play the inverse function theorem.

Theorem 3. (Inverse function theorem for Banach spaces) Suppose that F : X → Y
is a C1 map between Banach spaces. Suppose that x0 ∈ X and that dFx0 : X →
Y is an isomorphism. Then there is a neighborhood U of x0 so that F maps U
diffeomorphically onto a neighborhood V of F (x0).

In particular, we will use the following corollary:

Corollary 4. Suppose that F : X → Y is a C1 map between Banach spaces. If
dFx0 : X → Y is an isomorphism, then the image of F contains a neighborhood of
F (x0).

The proof of the inverse function theorem for Banach spaces is actually the same
as the proof for maps from Rn to Rn. We will review/sketch the proof next lecture.
In the meantime, you might see if you can remember it.
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The map dNu is an isomorphism for every u ∈ X because of the solution to the
Dirichlet problem coming from Schauder theory. We recall the statement of the
result.

Theorem 5. Suppose that

Lu = aij∂i∂ju+ bi∂iu+ cu,
i,j i

where a, b, c

∑ ∑
∈ Cα(B1), and c ≤ 0.

Then the map

u (Lu, u ∂B1)

is an isomorphism from C2,α

7→ |
(B1) to Cα(B1)⊕ C2,α(∂B1).

(In the case of dNu, the 0th-order coefficient c is −3u2 ≤ 0. And so dNu obeys the
hypotheses of Theorem 5 and so dNu is an isomorphism.)

Corollary 6. The image of the map N : X → Y is open.

Proof. For each u ∈ X, dNu is an isomorphism. By Corollary 4, the image of N
contains an open neighborhood of N(u). �

Since N(0) = 0, we see that the image of N contains an open neighborhood of 0.
In other words,

Corollary 7. There exists some ε > 0, so that if ‖f‖Cα(B1) < ε and ‖φ‖C2,α(B1) < ε,
then there is a function u ∈ C2,α(B1) so that

4u− u3 = f ;u|∂B1 = φ.

3. The method of continuity

If F : X → Y is a C1 map between Banach spaces, and dFx is an isomorphism for
every x ∈ X, does it follow that F is surjective? The answer is no, even if X and Y
are just the 1-dimensional Banach space R. Consider the map F (x) = arctan x. The
map F is a diffeomorphism from R to (−π/2, π/2). At each x, dFx is an isomorphism,
but the image of F is not R.

At this point, estimates about F come into play. To illustrate the idea, we begin
with maps F : Rn → Rn.

Proposition 8. Suppose that F : Rn → Rn is a C1 map, and suppose that dFx is
an isomorphism for all x ∈ Rn.

Also suppose that |x| ≤ g(|F (x)|) for some continuous function g : R→ R.
Then F is surjective.
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Proof. (Method of continuity). Let y Rn. We want to show that there exists x
with F (x) = y. We pick any x ∈ Rn

∈
0 , and we let y0 = F (x0). Then we define yt by

yt = ty + (1− t)y0.
We have y0 = F (x0) and y1 = y. We also note that yt is changing continuously in

t, and |yt| is uniformly bounded.
We define

Sol := {t ∈ [0, 1]|yt lies in the image of F}.
So far, it is clear that 0 ∈ Sol. The isomorphism condition will show that Sol is

open. Our inequality on |x| will show that Sol is closed. Therefore, we will have
Sol = [0, 1], and so y = y1 will lie in the image of F .

Let us check that Sol is open. Suppose that t ∈ Sol, and so yt is in the image of
F . Say F (x) = yt. We know that dFx is an isomorphism, and so the image of F
contains a neighborhood of yt. Therefore, there is some ε > 0 so that the image of
F contains yt′ for all |t′ − t| < ε.

Now let us check that Sol is closed. Suppose that tj ∈ Sol with tj → t . Since∞
tj ∈ Sol, there exists xj with F (xj) = ytj . By our inequality, |xj| ≤ g(|ytj |) is
uniformly bounded. By compactness, there is a subsequence of xj that converges to
some point x . Now by continuity F (x ) = limF (x∞ ∞ j) = lim ytj = yt .∞ �

Based on this proof, we see that we should prove an estimate for our non-linear
operator N .

Proposition 9. If u ∈ C2(B1), and if Nu = (4u − u3, u
2

|∂B1) is in Y = Cα(B1) ⊕
C ,α(∂B1), then

‖u‖C2,α(B1) ≤ g(‖Nu‖Y ),

for a continuous function g : R→ R.

The proof will show that g can be taken to be a power: g(B) = CBp for some
C, p. Before proving this result, we begin with a Lemma which is a version of the
maximum principle for this non-linear setting.

Lemma 10. (C0 bound) If u ∈ C2(B1), 4u− u3 = f , and u|∂B1 = φ, then

‖u‖C0 . ‖f‖C0 + ‖φ‖C0 .

Proof. We will bound maxB1 u. A similar argument applies to maxB1(−u).
Let w = u+Ax21 for a constant A that we will choose later, where x1 is one of the

coordinates. We study the maximum of w. Suppose that w has an interior maximum
at x0 ∈ B1. At x0, we must have ∇w(x0) = 0 and 4w(x0) ≤ 0. Therefore,
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0 ≥ 4w(x0) = 4u(x0) + 2A = u(x 3
0) + f(x0) + 2A.

We choose A = ‖f‖C0 , so that f(x0) + 2A > 0. We conclude that if x0 is a local
maximum of w, then u(x0) < 0 and so w(x0) < A. Therefore,

maxu maxw maxw + A maxu+ 2A φ C0 + 2 f C0 .
B1

≤
B1

≤
∂B1

≤
∂B1

≤ ‖ ‖ ‖ ‖

�

Remark. This proof depended on the signs working out in our favor. If we were
studying the PDE 4u + u3 = f , then the signs would have worked out differently,
and we could have had u(x0) � 0 at a maximum of w. The maximum principle
would then fail, and we would get no good bounds. Indeed, for this equation, there
is no good regularity estimate of the form in Proposition 9.

Proof of Proposition 9. Suppose u ∈ C2(B ), 4u− u31 = f , and u|∂B1 = φ. We want
to show that ‖u‖C2,α ≤ g(‖f‖Cα + ‖φ‖C2,α).

We apply the global Schauder inequality.

‖u‖C2,α(B1) . ‖4u‖ 3
Cα + ‖φ‖C2,α ≤ ‖u ‖Cα + ‖f‖Cα +

3

‖φ‖C2,α .

We have to deal with the term ‖u ‖Cα on the right hand side. In general, ‖fg‖Cα ≤
‖f‖Cα‖g‖C0 + ‖f‖C0‖g‖Cα , and so we have

‖u3‖Cα ≤ 10‖u‖2C0‖u‖Cα .
Applying the C0 bound from Lemma 10, we get

‖u3‖Cα . (‖f‖C0 + ‖φ‖C0)2‖u‖Cα .
Now we can use the Peter-Paul type inequality

‖u‖Cα(B1) ≤ ε‖u‖ s
C2,α(B1) + Cε− ‖u‖C0(B1),

for some exponent s = s(α). We choose ε small enough so that (‖f‖ 2
C0+‖φ‖C0) ε� 1.

Plugging this into our original inequality, we get:

‖u‖C2,α(B1) ≤ (1/2)‖u‖ 2s
C2,α(B 0 0

1) + C(‖f‖C + ‖φ‖C ) ‖u‖C0 + C‖f‖Cα + C‖φ‖C2,α .

Now we can rearrange the dangerous term (1/2)‖u‖C2,α(B1), and use Lemma 10 to
control ‖u‖C0 , and we get the desired estimate. �

Using the method of continuity and Proposition 9, we will finish the proof of
Theorem 1 next class.
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