Lecture Notes for LG's Diff. Analysis

trans. Paul Gallagher

DiGeorgi-Nash-Moser Theorem

1 Classical Approach

Our goal in these notes will be to prove the following theorem:
Theorem 1.1 (DiGeorgi-Nash-Moser). Let

$$
\begin{equation*}
L u:=\sum \partial_{i}\left(a_{i j} \partial_{j} u\right) \text { and } 0<\lambda \leq a_{i j} \leq \Lambda \tag{DGH}
\end{equation*}
$$

Then there exists $\alpha(n, \lambda, \Lambda)>0$ and $C(n, \lambda, \Lambda)$ such that if $L u=0$, then

$$
\|u\|_{C^{\alpha}\left(B_{1 / 2}\right)} \leq C(\lambda, \Lambda, n)\|u\|_{C^{0}\left(B_{1}\right)}
$$

Note that this estimate does not in any way involve derivatives of the $a_{i j}$.
We start by reminding of the Dirichlet energy of a function:
Definition 1.1 (Dirichlet Energy). If $u: \Omega \rightarrow \mathbb{R}$, then $E(u)=\int_{\Omega}|\nabla u|^{2}$.

With this, we have the following easy proposition.
Proposition 1.1. If $u, w \in C^{2}(\bar{\Omega}), u=w$ on $\partial \Omega$, and $\Delta u=0$, then $E(u) \leq$ $E(w)$.

Proof. : Let $w=u+v$, so $\left.v\right|_{\partial \Omega}=0$. Then

$$
\begin{aligned}
E(w) & =\int_{\Omega}\langle\nabla w, \nabla w\rangle=\int_{\Omega}|\nabla u|^{2}+|\nabla v|^{2}+2 \int_{\Omega} \nabla u \cdot \nabla v \\
& \leq \int_{\Omega}|\nabla u|^{2}=E(u)
\end{aligned}
$$

where we got from the first line to the second by integration by parts.

In a similar way, we can define
Definition 1.2 (Gen. Dirichlet Energy). If L, a satisfies (DGH), then

$$
E_{a}(u)=\int_{\Omega} \sum a_{i j}\left(\partial_{i} u\right)\left(\partial_{j} u\right)
$$

and get a similar proposition with identical proof:
Proposition 1.2. If $u, w \in C^{2}(\bar{\Omega})$, and $u=w$ on $\partial \Omega$, and $L u=0$, then $E_{a}(w) \geq E_{a}(u)$.

We now prove an L^{2} estimate relating ∇u to u.
Proposition 1.3. If L follows (DGH) and $L u=0$ on B_{1} then

$$
\int_{B_{1 / 2}}|\nabla u|^{2} \lesssim \int_{B_{1}}|u|^{2}
$$

Proof. We will use integration by parts and localization. Let $\eta=1$ on $B_{1 / 2}$ and be 0 outside of B_{1}.

$$
\begin{aligned}
\int_{B_{1 / 2}}|\nabla u|^{2} & \leq \int \eta^{2}|\nabla u|^{2} \approx \int \eta^{2} \sum a_{i j} \partial_{i} u \partial_{j} u \\
& \leq \int \eta^{2}(L u) u+\int|\nabla \eta| \eta|\nabla u||u| \\
& \leq\left(\int \eta^{2}|\nabla u|^{2}\right)^{1 / 2}\left(\int|\nabla \eta|^{2} u^{2}\right)^{1 / 2}
\end{aligned}
$$

A classical approach would be to then prove the following:
Proposition 1.4. If (DGH), $L u=0$ and $\left\|a_{i j}\right\|_{C^{1}} \leq B$ then

$$
\int_{B_{1 / 2}}\left|D^{2} u\right|^{2} \leq C(B, n, \lambda, \Lambda) \int_{B_{3 / 4}}|\nabla u|^{2}
$$

Proof. We have that $0=\partial_{k} L u=L\left(\partial_{k} u\right)+\left(\partial_{k} a_{i j}\right) \partial_{i} \partial_{j} u$. Then,

$$
\begin{aligned}
\int_{B_{1 / 2}}\left|D^{2} u\right|^{2} & \lesssim \int \eta^{2} \sum a_{i j} \partial_{i} \partial_{k} u \partial_{j} \partial_{k} u \\
& \lesssim \int|\nabla \eta| \eta\left|D^{2} u\right||\nabla u|+\int \eta^{2} L\left(\partial_{k} u\right) \partial_{k} u \\
& \lesssim \int|\nabla \eta| \eta\left|D^{2} u\right||\nabla u|+\int \eta^{2} B\left|D^{2} u\right||\nabla u|
\end{aligned}
$$

The result comes from applying Cauchy-Schwartz to this last pair of terms.

However, this won't get us closer to proving DiGeorgi-Nash-Moser because we're using an estimate on the derivatives of a in our inequality. Looks like we'll have to be clever!

$2 \quad L^{\infty}$ Bound

Theorem 2.1 (DGNM L^{∞} bound). Let L satisfy (DGH), $L u \geq 0, u>0$. Then

$$
\|u\|_{L^{\infty}\left(B_{1 / 2}\right)} \leq\|u\|_{L^{2}\left(B_{1}\right)}
$$

Proof. We start with a lemma:
Lemma 2.1. Under the hypotheses, and if $1 / 2 \leq r<r+w \leq 1$ then

$$
\|\nabla u\|_{L^{2}\left(B_{r}\right)} \lesssim\|u\|_{L^{2}\left(B_{r+w}\right)} w^{-1}
$$

Proof. Let $\eta=1$ on B_{r} and 0 on B_{r+w}^{c}. Note that η can be constructed so that $|\nabla \eta|<2 w^{-1}$. Then the proof proceeds in exactly the same fashion as Proposition 1.3.

Lemma 2.2. Under hypotheses, and $1 / 2 \leq r<r+2 \leq 1$, we have

$$
\|u\|_{L^{2 n /(n-2)\left(B_{r}\right)}} \lesssim w^{-1}\|u\|_{L^{2}\left(B_{r+w}\right)}
$$

Proof. Consider ηu with $\eta=1$ on B_{r}, and 0 outside of $B_{r+w / 2}$. Then by the Sobolev inequality, we have

$$
\begin{aligned}
\|\eta u\|_{L^{2 n /(n-2)}} & \lesssim\|\nabla(\eta u)\|_{L^{2}} \\
& \leq\|(\nabla \eta) u\|_{L^{2}}+\|\eta(\nabla u)\|_{L^{2}}
\end{aligned}
$$

Also, we have that

$$
\begin{aligned}
& \|(\nabla \eta) u\|_{L^{2}} \leq\|\nabla \eta\|_{\infty}\|u\|_{L^{2}\left(B_{r+w} / 2\right)} \lesssim w^{-1}\|u\|_{L^{2}\left(B_{r+w}\right)} \\
& \|\eta(\nabla u)\|_{L^{2}} \leq\|\nabla u\|_{L^{2}\left(B_{r+w / 2}\right)} \lesssim w^{-1}\|u\|_{L^{2}\left(B_{r+w}\right)}
\end{aligned}
$$

Lemma 2.3. If $\beta>1, L u \geq 0$ and $u>0$, then $L u^{\beta} \geq 0$.

Proof. Compute:

$$
\begin{aligned}
L u^{\beta} & =\sum \partial_{i}\left(a_{i j} \partial_{j}\left(u^{\beta}\right)\right)=\sum \partial_{i}\left(a_{i j} \beta u^{\beta-1} \partial_{j} u\right) \\
& =(L u)\left(\beta u^{\beta-1}\right)+\sum a_{i j} \partial_{i} u \partial_{j} u \beta(\beta-1) u^{\beta-2} \geq 0
\end{aligned}
$$

where the last inequality comes from ellipticity of $a_{i j}$.

Now, apply Lemma 2.2 to u^{β} to get

$$
\left\|u^{\beta}\right\|_{L^{2 n /(n-2)}\left(B_{r}\right)} \lesssim w^{-1}\left\|u^{\beta}\right\|_{L^{2}\left(B_{r+w}\right)}
$$

Rewriting this with $s=\frac{n}{n-2}$ we get

Lemma 2.4. If $1 / 2 \leq r<r+w \leq 1$ and $p \geq 2$, then

$$
\|u\|_{L^{s p}\left(B_{r}\right)} \leq\left(C w^{-1}\right)^{2 / p}\|u\|_{L^{p}\left(B_{r+w}\right)}
$$

For the next step, we iterate this lemma. If we have $1=r_{0}>r_{1}>\cdots>$ $r_{k}>1 / 2$, then we get the sequence of inequalities

$$
\|u\|_{L^{2}\left(B_{1}\right)} \geq A_{0}\|u\|_{L^{2 s}\left(B_{r_{1}}\right)} \geq \cdots \geq A_{0} \cdots A_{k-1}\|u\|_{L^{2 s^{k}}\left(B_{r_{k}}\right)}
$$

where the A_{j} are given by Lemma 2.4. Let's pick $r_{j}=\frac{1}{2}+\frac{1}{j+2}$, so that $r_{j}-r_{j+1} \approx j^{-2}$. Thus, $A_{j}=\left(C\left(r_{j}-r_{j-1}\right)^{-1}\right)^{s^{-j}}$. Therefore,

$$
\begin{aligned}
\log \left(\prod A_{j}\right) & \leq \sum \log \left(A_{j}\right) \leq \sum_{j=0}^{\infty} s^{-j}\left(C+C \log \left(r_{j}-r_{j+1}\right)\right) \\
& \leq \sum_{j=0}^{\infty} s^{-j}(C+C \log j)<\infty
\end{aligned}
$$

3 Finishing the Proof

Recall the Harnack inequality:
Theorem 3.1 (Harnack). If $\Delta u=0$ on B_{1} and $u>0$ then $\min _{B_{1 / 2}} u \geq$ $\gamma(n) \max _{B_{1}} u$.

We will show a Harnack inequality for our L which satisfies (DGH).
Theorem 3.2 (DGNM Harnack). If L satisfies (DGH), $L u=0,1>u>0$ on B_{1}, and

$$
\begin{equation*}
\left|\left\{x \in B_{1 / 2} \mid u(x)>1 / 10\right\}\right| \geq \frac{1}{10}\left|B_{1 / 2}\right| \tag{P}
\end{equation*}
$$

then $\min _{B_{1 / 2}} u \geq \gamma(n)$.
For now, let's assume this theorem, and see how it implies the DiGeorgi-Nash-Moser estimate.

Definition 3.1. $\operatorname{osc}_{\Omega} u:=\sup _{\Omega} u-\inf _{\Omega} u$.
Corollary 3.1. If $L u=0$ on $\Omega, B_{r}(x) \subset \Omega$, then

$$
\begin{equation*}
\operatorname{osc}_{B_{r / 2}(x)} u \leq(1-\gamma) \operatorname{osc}_{B_{r}(x)} u \tag{O}
\end{equation*}
$$

Proof. We start with some simple reductions via scaling. Without loss of generality, we can take:

$$
\begin{array}{r}
\inf _{B_{r}(x)} u=0, \sup _{B_{r}(x)} u=1, r=1 \\
\left|\left\{x \in B_{1 / 2} \mid u(x) \geq 1 / 2\right\}\right| \geq B_{1 / 2} / 2
\end{array}
$$

Thus by DGNM Harnack, $\min _{B_{1 / 2}} u \geq \gamma$, and thus $\operatorname{osc}_{B_{1 / 2}} u \leq 1-\gamma=$ $(1-\gamma) \operatorname{osc}_{B_{1}} u$

Now we can complete the proof with the following:
Proposition 3.1. Let $u: B_{1} \rightarrow \mathbb{R}$ satisfy (O). Then $\|u\|_{C^{\alpha}\left(B_{1 / 2}\right)} \lesssim\|u\|_{C^{0}\left(B_{1}\right)}$ for some $\alpha=\alpha(\gamma)>0$.

Proof. Let $x, y \in B^{1 / 2},|x-y|=d$ and $a=(x+y) / 2$. Then

$$
|u(x)-u(y)| \leq\left(\operatorname{osc}_{B_{d}(a)} u\right)(1-\gamma) \leq \cdots \leq(1-\gamma)^{k} \operatorname{osc}_{B_{2} k_{d}(a)} u
$$

Choose k such that $1 / 4<2^{k} d \leq 1 / 2$. Then $k=\log _{2}(1 / d)+O(1)$, and so

$$
|u(x)-u(y)| \leq(1-\gamma)^{k} \operatorname{osc}_{B_{1}} u \leq 2(1-\gamma)^{k} \mid u \|_{C^{0}\left(B_{1}\right)} .
$$

Also,

$$
(1-\gamma)^{k} \leq 4(1-\gamma)^{\log _{2}(1 / d)}=4 d^{-\log _{2}(1-\gamma)}
$$

Therefore, setting $\alpha(\gamma)=-\log _{2}(1-\gamma) \approx \gamma+O\left(\gamma^{2}\right)$, we get our proposition.

Now let's prove the Harnack inequality. Before we do the DGNM Harnack, we'll remember how the normal Δ Harnack inequality works:

Lemma 3.1. If $\Delta u=0$ and $u>0$ then $\|\nabla \log u\|_{L^{\infty}\left(B_{1 / 2}\right)} \lesssim 1$.

Note that the lemma implies the Harnack inequality by integrating.

Proof. We have $\nabla \log u=\frac{\nabla u}{u}$. Also, by elliptic regularity, we have that

$$
|\nabla u|(x) \lesssim\|u\|_{L^{1}\left(B_{1 / 2}(x)\right)}=\int_{B_{1 / 2}(x)} u=\left|B_{1 / 2}(x)\right| u(x)
$$

so that $|\nabla u| / u \lesssim 1$.

With this method in mind, let's prove the DGNM Harnack.

DGNM Harnack.

Lemma 3.2. If L satisfies (DGH), $L u=0, u>0$ on B_{1} then $\|\nabla \log u\|_{L^{2}\left(B_{1 / 2}\right)} \lesssim$ 1.

Proof. Pick a nice cutoff function η as usual.

$$
\begin{aligned}
\int_{B_{1 / 2}}|\nabla \log u|^{2} & =\int \eta^{2}|\nabla \log u|^{2} \lesssim \int \eta^{2} \sum a_{i j} \partial_{i} \log u \partial_{j} \log u \\
& =\int \eta^{2} \sum a_{i j} \frac{\partial_{i} u}{u} \frac{\partial_{j} u}{u}=-\int \eta^{2} \sum a_{i j} \partial_{i} u \partial_{j} u^{-1} \\
& \lesssim \int \eta|\nabla \eta||\nabla u| u^{-1}=\int \eta|\nabla \eta||\nabla \log u| \\
& \leq\left(\int \eta^{2}|\nabla \log u|^{2}\right)^{1 / 2}\left(\int|\nabla \eta|^{2}\right)^{1 / 2}
\end{aligned}
$$

Letting $w=-\log u$, we have that $\|\nabla w\|_{L^{2}\left(B_{9 / 10)}\right)} \lesssim 1$. We want an L^{∞} bound on w. By (P), we have that

$$
\left|\left\{x \in B_{1 / 2} \mid w \leq \log 10\right\}\right| \geq \frac{1}{10}\left|B_{1 / 2}\right|
$$

Now we use the Poincare Inequality:

Theorem 3.3 (Poincare). If (P) then $\int_{B_{8 / 10}}|w|^{2} \lesssim \int_{B_{9 / 10}}|\nabla w|^{2}+1$

Therefore, we have an L^{2} bound on w instead of ∇w. Now we have
Lemma 3.3. $L w \geq 0$

Proof. Compute:

$$
\begin{aligned}
-\sum \partial_{i}\left(a_{i j} \partial_{j} \log u\right) & =-\sum \partial_{i}\left(a_{i j}\left(\partial_{j} u\right) u^{-1}\right) \\
& =L u \cdot u^{-1}+\sum a_{i j}\left(\partial_{i} u\right)\left(\partial_{j} u\right) u^{-2} \geq 0
\end{aligned}
$$

Finally, $w=-\log u>0$ because $u<1$, and so we can apply Theorem 2.1 and get

$$
\|w\|_{L^{\infty}\left(B_{1 / 2}\right)} \lesssim\|w\|_{L^{2}\left(B_{8 / 10}\right)} \lesssim 1
$$

thus completing the proof of the Harnack inequality.

MIT OpenCourseWare
http://ocw.mit.edu
18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis
Spring[2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

