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In Lecture 2 we mentioned that

∥∥∂2u

for u

∥∥
C

. ‖∆u‖C0 and
∥∥∂2

0 u
∥∥
C1 . ‖∆u‖C1 (1)

∈ C3
c (Rn). However, Korn showed that

[∂2u]α . [∆u]α

for any a ∈ (0, 1). We will spend the next few lectures proving results involving the α-Hölder norms,

culminating in a proof of the Schauder inequality. In the process we will also see why the bounds in (1) fail.

The α-Hölder norms provide an intermediate measure of smoothness between C0 and C1, and offer valuable

control on solutions to ∆u = f and ∆u = 0 with boundary conditions.

To approach Korn’s inequality, we will use an expression for ∂2u in terms of ∆u. This formula is derived

from physical potential theory. The “gravitational” field in Rn is given by

x
Fn(x) = cn |x|n

for some constant cn > 0 and x = 0. As we shall see, it is most convenient to choose cn = 1
|Sn−1 to(1)|

simplify divergence formulæ for Fn. In fact Fn is generated by the potential |x|−n+2
c′n if n 3

Γn(x) =
≥c′2 log |x| if n = 2

for appropriate∣ constants c′
n+1∣ n > 0. That is, Fn = .

2

∇Γn Is is easy to calculate that |∇Γn| ∼ |x|− and∣∇ Γn∣ ∼ |x|−n for large |x|. Furthermore, divFn = 0 at x = 0, so ∆Γn = 0 for x = 0. We note in passing

that divFn = 0 may be derived without computation from the symmetry of Fn and the fact that∫
Fn

Sn−1(r)

· n̂ = 1 (2)

is independent of r.
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For the remainder of the lecture, let Ω ⊂ Rn be an open bounded region with smooth boundary ∂Ω.

From divFn = 0 for x = 0 and (2), we may easily verify that

∫ 1 if 0 ∈ Ω
Fn · n̂ = (3)

Ω 0 if 0 6∈ Ω.

This reflects the physical (and distribution theoretic)


interpretation that divFn = ∆Γn = δ0. We now verify

that convolution against Γn yields a solution to Poisson’s equation.

Proposition 1. If f ∈ C2
c (Rn) and u := Γn ∗ f , then u ∈ C2(Rn) and ∆u = f .

Proof. By definition,

u(x) =

∫
f(y)Γn(x− y) dy =

Ω

∫
Γn(y)f(x

Ω

− y) dy.

These integral expressions are well-defined because f ∈ C0
c (Rn) and Γn ∈ L1

loc(Rn). Also, standard domi-

nated convergence arguments show that we may bring first derivatives under the integral sign:

∂ju =

∫
f(y)∂jΓn(x

ω

− y) dy =

∫
Γ(y)∂jf(x

Ω

− y) dy.

Again these expressions are well-defined because f ∈ C1
c and ∂jΓn ∈ L1 n

loc(R ). Differentiating further, we

have

∂i∂ju =

∫
Γ(y)∂i∂jf(x y) dy.

Ω

−

Note that we may not form a parallel expression with ∂i∂jΓn, because ∂i∂jΓn 6∈ L1
loc(Rn). By continuity, it

is sufficient to verify that ∫
∆u = f

Ω

∫
Ω

for all regions Ω satisfying the previously stated conditions. By the divergence theorem,∫
∆u =

∫
∇u · n̂ =

∫ (∫
f(y)∇Γn(x− y) dy

)
· n̂ dA(x).

Ω ∂Ω Ω Rn

We use Fubini to interchange the order of integration:∫
∆u =

∫
f(y)

(∫
∇Γn(x (

Ω

− y) dA
Rn Ω

· n̂ x)

)
dy.

Now (3) implies that ∫
∆u =

∫
f(y)χΩ(y) dy = .

Rn

∫
f

Ω Ω

Having proven a solution to the equation ∆u = f , the question of uniqueness naturally arises. Could

other expressions for u also solve Laplace’s equation? We establish uniqueness in the case that u is compactly

supported:

Proposition 2. If u ∈ C4
c (Rn) and f := ∆u, then u = Γn ∗ f .
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Proof. Let w := Γn ∗ f , so ∆(u − w) = 0. The maximum principle for harmonic functions shows that

maxBR
|u− w| = max∂BR

|u− w|. Hence to verify that u = w it is sufficient to show that

lim max
R→∞ ∂BR

|u− w| = 0.

Since u is compactly supported, this is equivalent to showing that

lim max
R→∞ ∂BR

|w| = 0.

This is simple when n ≥ 3. After all, if suppu ⊂ BR0 and |x| = R ≥ 2R0, we have

|w(x)| =
∣∣∫∣∣ f(y)Γn(x− y) dy

∣∣∣∣ ≤ ‖f‖L1( n) sup |Γn(z)R
Rn |z R/2

| → 0
|≥

as R → ∞. This estimate fails when n = 2, because Γ2 does not decay as |x| → ∞. We therefore deploy

a more careful analysis, relying on the fact that f is the Laplacian of a compactly supported function. In

particular, ∫
f(y) dy =

∫
∆u(y) dy =

∫
∇u(y) )

R R

· n̂ dA(y = 0.
2 BR S

0 0

Hence when |x| = R ≥ 2R0,

|w(x)| =

∣∣∣∫∣∣ f(y)Γ2(x) dy + (
BR0

∫
f(y)[Γ2 x

BR0

− y)− Γ2(x)] dy

∣∣∣
= y

∣∣∣∣∫∣∣ f( )[Γ

∣
2(x y) Γ2(x)] dy∫ BR0

− −

∣∣
max

∣∣
≤ |f(y)| |y| Γ2 dy

[x,xB −y]
0

|∇ |

∣
R

≤ R0 ‖f‖L1( 2) sup z
/

|∇Γ (R 2 )
|z|≥R 2

| → 0

as R→∞.

Korn’s inequality bounds the regularity of ∂2u in terms of ∆u for compactly supported functions. We

therefore wish to adapt the expressions in Proposition 1 to derive formulæ for the second partials of u.

However, as noted in the proof of Proposition 1, this goal is complicated by the fact that ∂i∂jΓn 6∈ L1
loc(Rn).

Hence we may not directly write ∂i∂ju = (∆u) ∗ ∂i∂jΓn. We might hope that the integral defining the

convolution converges conditionally, i.e. that

∂i∂ju = lim f(y)∂i∂jΓn(x y) dy (4)
ε→0+

∫
x y|>ε

−
| −

for u ∈ C4
c (Rn). However, this equation is patently false if we recall that ∆Γn(z) = 0 for z = 0. If we use (4)

with i = j and sum over 1 ≤ i ≤ n, we find ∆u = 0, regardless of the choice of u. Hence we need to account

somehow for the effect of the singularity of Γn on derivatives of the convolution (∆u) ∗ Γn. As it turns out,
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(4) is almost correct:

Proposition 3. If f ∈ C2
c (Rn) and u := f ∗ Γn, then

∂i∂ju(x) = lim

∫
1

f(y)∂i∂jΓn(x y) dy + δijf(x). (5)
ε→0+ |x n|>ε

−
−y

Proof. As noted in the proof of Proposition 1, we may certainly write

∂i∂ju(x) = ∂i

∫
f(y)∂jΓn(x− y) dy = ∂i

∫
f(x− y)∂jΓn(y) dy =

∫
∂if(x

Rn Rn Rn

− y)∂jΓn(y) dy.

The game of switching the convolution arguments between y and x− y is necessary because the derivatives

∂i and ∂j act on x, not y. Because ∂jΓn is locally integrable, we have

∂i∂ju(x) = lim

∫
∂if(x y

ε→0+ |y|>ε
− )∂jΓn(y) dy

= lim ∂i

∫
f(x− y)∂jΓn(y) dy

ε→0+ |y|>ε

= lim ∂i f
ε→0+

∫
(y)∂jΓn(x

|x−y|>ε
− y) dy.

We wish to once again move the derivative ∂i inside the integral, but the region of integration now depends

on x. Accounting for this:

∂i

∫
f(y)∂jΓn(x− y) dy =

∫
f(y)∂i∂jΓn(x− y) dy +

∫
(x̂i n̂)f(y)∂jΓn(x y) dy.

|x−y|>ε |x−y x−y|=ε
·

|>ε
−

|

Hence

∂i∂ju(x) = lim

∫
f(y)∂i∂jΓn(x y) dy + lim (x̂i n̂)f(y)∂jΓn(x y) dy.

ε→0+ |x−y|>ε
−

ε→0+

∫
|x−y

· −
|=ε

To complete the proof, we need to compute the second integral on the right hand side. As ε→ 0+, we note

that x̂i · n̂ = O(1), f(y) = f(x) +
n 1

O(ε), and ∂jΓn(x− y) = O(ε−n+1). The region of integration is a sphere

of volume O(ε − ). We therefore see that we may replace f(y) by f(x) in the integral to achieve the same

limit. That is:

lim

∫
(x̂i · n̂)f(y)∂jΓn(x− y) dy = f(x) lim

∫
(x̂i · n̂)∂jΓn(x− y) dy

ε→0+ | − ε→0x y| +
=ε ∫|x−y|=ε

zizj
= f(x) lim cn dA(z)

ε→0+ n+1
Sn−1(ε) |z|

1
= δijf(x).
n
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