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Lectures 1-2

Instructor: Larry Guth
Trans.: Kevin Sackel

Lecture 1: 4 February 2015

Throughout these notes, we will be working typically over n
R , and we will use coordinates x1, . . . , xn when

necessary. The convention will be that the Laplacian on n
R with the standard Euclidean metric is given by

2
n

the analyst’s sign convention Δ =
∑

i=1

(
∂

∂xi

)
.

1.1 Theory of Harmonic Functions

There are three main properties of harmonic functions which we will quickly prove, assuming the results to
be mostly review. These are the Maximum Principle, the Mean Value Property, and regularity. A main
focus of the class will be on how these properties transfer over to more general operators other than the
Laplacian.

1.1.1 Maximum Principle

Lemma 1.1. If Ω ⊂ n is open with Ω compact and u ∈ C2 0
R (Ω) ∩ C (Ω) with Δu > 0, then

maxu = maxu.
Ω ∂Ω

Proof. Since Ω is compact, u attains its maximum, say at x ∈ Ω. Suppose by way of contradiction that
x ∈ Ω. Then since x is a maximum, we must have that ∂iu(x) = 0 and ∂2

i u(x) ≤ 0 for all i. Summing over
i yields Δu ≤ 0, and we establish a contradiction.

Lemma 1.2 (Maximum Principle for Harmonic Functions). Suppose Ω and u are as in the previous lemma
but with Δu = 0 (i.e. u is harmonic). Then the same conclusion follows, i.e.

maxu = maxu.
Ω ∂Ω

Proof. Consider for ε > 0 the function uε(x) = u(x)+ε|x|2. Then one calculates (Δuε)(x) = (Δu)(x)+2nε =
2nε > 0. Hence the previous lemma applies to show uε attains its maximum on the boundary, and taking
the limit as ε → 0 yields the result.

Corollary 1.3. If Δu = Δv with u, v ∈ C2(Ω) ∩ C0(Ω) and u|∂Ω = v|∂Ω, then u = v on all of Ω.

Proof. We have that Δ(u − v) = 0 with u − v = 0 on ∂Ω, so by the Maximum Principle, u ≤ v on Ω.
Symmetrically, v ≤ u on Ω. Hence, u = v on Ω.

1.1.2 Mean Value Property

From now on, we will denote by B(x, r) or Br(x) the ball of radius r centered at x, and by S(x, r) or Sr(x)
the sphere of radius r centered at x. If there is no x in the notation, it will usually be clear in context. Many
times, we will take x to be the origin, but not always, so do pay attention.

Theorem 1.4 (Mean Value Property). If u ∈ C2( n
R ) with Δu = 0, then for all r > 0, we have u(x) =∫

− u(y)dy.
B(x,r)
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Proof. We have

d

dr

∫
− u = ∂noru
Sr(x)

∫
−
Sr

1
= | |

∫
∂noru

Sr ∂Br

1
= div u|Sr|

∫
Br

∇
1

= Δu = 0|Sr|
∫
Br

where we have used the Divergence Theorem and the fact that Δ = div∇. Hence,
∫
− u is constant, and
Sr

letting r → 0, we see from the continuity of u that this constant is u(x).

This proof is somehow a bit mysterious, and doesn’t really tell us what’s going on under the hood. We
present a second proof which takes into account the role of symmetries. We will only do this for the case of
n = 2 and with x = 0, but this can be easily generalized.

Alternate proof of MVP, n = 2. For θ ∈ SO(2) � /2π we have a corresponding rotation R : 2 → 2
R Z R Rθ ,

which, as an isometry, preserves the Laplacian. Hence, if we define

(θ · u)(y) := u(Rθ(y)),

then Rθu is still harmonic. Next set

1
)(

π

∫ 2π

(Au)(y) := (θ u y
2 0

· )dθ.

We see immediately by taking the Laplacian, which commutes with the integral, that Au is also harmonic.
Now by definition, (Au)(y) =

∫
− u is the function we have to prove is constant. But by construction, Au is
S|y|

constant on spheres centered at the origin, and so the uniqueness of Corollary 1.3 yields that Au is constant
on the interior of any disk.

1.1.3 Regularity

Theorem 1.5. If u ∈ C2( n
R ) with Δu = 0 on B1, then there is some constant Cn depending only on the

dimension n such that
max
B1/2

|∇u| ≤ Cn ·max
B1

|u|.

Proof. Suppose x ∈ B1/2. Then by the mean value property and the fact that B1/2(x) ⊆ B1, we have

1
u(x) = u(y)dy.|B1/2|

∫
B1/2(x)

We wish to take the derivative with respect to x, which is only found in the domain of integration, not the
integrand. One sees that

1
∂iu(x) =

∫
〈nor, ∂i〉u(y)dy,|B1/2| S1/2(x)

whereby the notation 〈nor, ∂i〉 means the dot product of the vector ∂i with the normal vector at the point
y ∈ S(x, 1/2). These coefficients don’t actually depend on y, and we see immediately that

|∂iu(x)| ≤ Cn max |u|

for some constant Cn depending only on n.
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Corollary 1.6. If u ∈ C2(B1) and Δu = 0 on B1, then there is some constant C(k, n) depending only on
k and n such that

max |∂ku| ≤ C(k, n)max |u
B1/2 B1

|

Remark 1.7. If a function is C2 and harmonic, then it is C∞. (Even further, Weyl’s lemma tells us that
harmonic distributions are C∞.)

1.2 More General Situations

We will deal with more general operators than just Δ.

• n
Variable coefficient operators are of the form Lu(x) = i,j=1 aij(x)∂i∂ju(x) where for each x,
[aij(x)] is a symmetric matrix (as we can always assume). We may want to restrict to cases where
[aij(x)] has eigenvalues all strictly positive. The Laplacian Δ

∑
is an example of this where the aij are

constants.

• Non-linear operators might look something like Δu = ±u3.

• Quasi-linear operators are of the form
∑

aij(u, ∂ku)∂i∂ju(x) = 0. These look difficult to study, but
they come up in geometry such as in the minimal surface equation, so they are worth attention.

One might wonder whether the Maximum Principle, Mean Value Property, or Regularity results that
harmonic functions enjoy are shared by variable coefficient operators. We will be discussing in what ways
this is the case. A big first theorem for us to prove is Schauder’s.

Recall the idea of Holder-regularit¨ y. For 0 < α ≤ 1, we have the semi-norms

f(x) f(y)
[f ]Cα := supx,y

| − |
,|x− y|α

and corresponding norms ‖f‖Cα := [f ]Cα +‖f‖C0 , where these are defined on some space of functions. Then

Theorem 1.8 (Schauder Interior Estimate). If Lu is a variable coefficient operator as above with 0 < λ ≤
eig[aij ] ≤ Λ and ‖aij‖Cα(B1) ≤ B for some 0 < α < 1, and in addition there is some u ∈ C2(B1) such that
Lu = 0 on B1, then

‖u‖C2,α(B1/2) ≤ C(λ,Λ, B, n, α) · ‖u‖C0(B1)

where ‖u‖ 2
C2,α = ‖u‖C2 + [∂ u]Cα .

How might we prove something like this? Well, WSLOG, we can assume that aij(x0) = δij , and then
look at some small ball around x0 on which we will have L = Δ+ small order terms. So Lu = 0 means that
u is almost harmonic. We will come back to the problem of putting estimates on almost harmonic functions.

As a toy example, one might ask a related problem. Suppose u : B1 → R is C2 with |Δu(x)| ≤ 10−6 and
|u(x)| ≤ 1 on B1. Then can we say |∇u(0)| ≤ 106?

Lecture 2: 6 February 2015

2.1 Almost Harmonic Functions

Proposition 2.1. If u ∈ C3 ( n
Rcpt ), then

‖∂2u‖L2 = ‖Δu‖L2 .
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Proof. This follows from two applications of integration by parts:

‖∂2u‖2L2 =
∑∫

(∂i∂ju)(∂i∂ju)
Rn

i,j

= −
∑∫

(∂2
i ∂ju)(∂ju)

Rn
i,j

=
∑∫

(∂2
i u)(∂

2
j u)

Rn
i,j

= (

∫
Rn

∑
∂2
i u)(

i

2

∑
∂2
j u)

j

= ‖Δu‖L2

Proposition 2.2. If |aij(x) − δij | < ε(n) for all x ∈ n
R and all 1 ≤ i, j ≤ n, where ε(n) is some small

enough constant depending only on n (we will see we can take ε ≤ (2n)−1), and if L = i,j aij(x)∂i∂j, then

for any u ∈ C3
cpt(

n
R ), we have

∂2u‖L2 ≤ 2

∑
‖Lu‖L2 .

Proof. We have

‖∂2u‖2L2 =

∫
|∂2u|2

=

∫
|Δu|2

=

∫
|Lu+ (Δ− L)u|2

≤
∫

|Lu|2 + 2

∫
|Lu||(Δ− L)u|+

∫
|(Δ− L)u|2

Now, the coefficients of Δ − L are aij − δij , which are bounded in absolute value by ε, so continuing the
chain of inequalities, we have

‖∂2u‖2 ≤ ‖Lu‖2L2 L2 + 2εn

∫
|Lu||∂2 2u|+ ε n2‖∂2u‖2L2 .

Applying the Cauchy-Schwarz inequality to the middle term, this yields

‖∂2u‖2 ≤ 2‖Lu‖2 + 2ε2 2
L n2 2

2 L2 ‖∂ u‖L2 .

If we choose ε ≤ (2n)−1, then rearranging yields

1‖∂2u
2

‖2 2 2 2 2 2
L2 ≤ −(1 2ε n )‖∂ u‖L2 ≤ ‖2 Lu‖L2 .

Proposition 2.3. If L is as in Proposition 2.2, and u ∈ C3(B1) with Lu = 0 on B1, then

‖∂2u‖L2(B 2
1/2) ≤ C(n)‖|∂u|+ |u|‖L (B1)

for some C(n) depending only on n.
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Proof. The idea is to apply Proposition 2.2 to a localized version of u. Namely, take η a smooth bump
function supported on B1 with η = 1 on B1. Then

‖∂2u‖2 2 2
L2(B1)

=

∫
∂ u

B1/2

| |

=

∫
B1/2

|∂2(ηu)|2

≤
∫

)
1

|∂2(ηu
B

|2

≤ 4

∫
L(ηu) 2

B1

| |

≤ 4

∫
η2 Lu

B1

| |2 + C(n)

∫
|∇u||∇η|+ C(n)

∫
|∂2η||u|

The first term is zero, and for the other two, an application of Cauchy-Schwarz separates the u and η terms
in into different integrals so that we get in total

‖∂2u‖2 2 2
L2(B ) ≤ C(n)D(η)(‖∂u‖L2 ) 2

1 (B1
+ ‖u‖L (B1)

)

where D only depends on η, a choice of which only depended on n.

Now, we showed that ‖∂2u‖L2 ≤ ‖Δu‖L2 (in fact we proved equality). This is both somewhat surprising
and also very powerful. One might ask if there are similar bounds in other norms. We provide four examples,
along with their answers:

1. The inequality does not hold in the C0-norm, which we will see in Lecture 4.

2. The inequality does hold in the Lp-norm, and this is the Calderon-Zygmund inequality from the 1950s.

3. The inequality does not hold int the C1-norm.

4. The inequality does hold in the Cα-norm. This is Korn’s inequality from the early 1900s. This will
be proved in Lecture 5.

Our goal over the next week will be to work especially towards Korn’s inequality. Essentially, we have the
analogy that Proposition 2.1 is to Proposition 2.3 as Korn’s inequality is to Schauder’s inequality, which we
stated last lecture. Our true main goal for this section of the class is Schauder’s inequality.

2.2 Solving Δu = f (a story from physics)

On our way to Korn’s inequality, we want to understand how we can write explicit estimates on the second
partial derivatives of u in terms of Δu. Here, the story begins with some classical physics theory. We will
make the mathematics a bit more precise next lecture.

The theory starts with gravity. In Newtonian mechanics, if there is a point mass at the origin, then the
force felt by any particle in 3

R is given by
x

F (x) =
−

.|x|3
It didn’t take long for people to notice that F = −∇Γ, where Γ = 1 is the potential energy, called the|x|
Newton potential. Further, divF = ΔΓ = 0.

Theorem 2.4 (Newton). The gravitational field generated by a uniform mass on the ball Br is the same
outside the ball as the gravitational field of the corresponding point mass at the center.

Proof. For a point z ∈ Br and x ∈ 3
R \Br, set Fz(x) = − x−z

3 . What the theorem is stating is that|x−z|∫
Fz(x)dz =

Br

|Br|F0(x), ∀ x ∈/ Br.
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Lemma 2.5. If Ω is a precompact open set in 3
R with smooth boundary, and z ∈ Ω, then∫
Fz(x)

∂Ω

· nor = +4π.

(If z ∈/ Ω, the same proof will show that this integral is just 0.)

Proof. Set U = Ω \Br(z) where r is small enough so that the entire ball lies inside Ω. Then the divergence
theorem shows that

0 =

∫
divFz =

U

∫
Fz

∂U

· nor =

∫
Fz

∂Ω

· nor −
∫

Fz nor.
∂Br(z)

·

But this last term is explicitly calculated to be 4π.

So now set V (x) =
∫

Fz(x)dz. By symmetry, V (x) is always parallel to x. It suffices to check that
Br ∫

V · nor =
∂B(R)

∫
F0

∂B(R)

· nor|Br|.

The RHS is easily seen to be 4π|Br| (by the calculation we stated at the end of the lemma), while the LHS
is ∫ (∫

Fz(x)dz

)
· nor dx =

∫ (∫
Fz(x) · nor dx dz = 4πdz = 4π Br ,

∂B(R) Br Br ∂B(R)

) ∫
Br

| |

where we have used the lemma.

Now suppose that f(z) is some mass distribution. Then we have

• The gravity field at x is F (x) = f(z)Fz(x)dx.

• The potential energy at x is u(x)

∫
= f(z)Γ(x− z)dz.

Laplace noticed that Δu = f . So in this w

∫
ay, we have an explicit solution to Δu = f for fixed f .

Further, if u ∈ C2, we have that for a domain Ω as in Newton’s Theorem,∫
Δu =

Ω

∫
∂Ω

∇u · nor.

We can take this instead to be our definition of the Laplacian in the sense of distributions. Doing this, note
that from the Lemma, we had ∫ {

4π, 0∇Γ · nor =
∈ Ω

Ω 0, 0 ∈/ Ω

so that in the distributional sense,
ΔΓ = 4πδ0.

If we believe this, then it is not hard to show that

u(x) =

∫
f(z)Γ(x− z)dz =⇒ Δu = f.
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