8. Convolution and density

We have defined an inclusion map

$$
\begin{equation*}
\mathcal{S}\left(\mathbb{R}^{n}\right) \ni \varphi \longmapsto u_{\varphi} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right), u_{\varphi}(\psi)=\int_{\mathbb{R}^{n}} \varphi(x) \psi(x) d x \forall \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{8.1}
\end{equation*}
$$

This allows us to 'think of' $\mathcal{S}\left(\mathbb{R}^{n}\right)$ as a subspace of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$; that is we habitually identify u_{φ} with φ. We can do this because we know (8.1) to be injective. We can extend the map (8.1) to include bigger spaces

$$
\begin{gather*}
\mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right) \ni \varphi \longmapsto u_{\varphi} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \\
L^{p}\left(\mathbb{R}^{n}\right) \ni \varphi \longmapsto u_{\varphi} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \\
M\left(\mathbb{R}^{n}\right) \ni \mu \longmapsto u_{\mu} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \tag{8.2}\\
u_{\mu}(\psi)=\int_{\mathbb{R}^{n}} \psi d \mu,
\end{gather*}
$$

but we need to know that these maps are injective before we can forget about them.

We can see this using convolution. This is a sort of 'product' of functions. To begin with, suppose $v \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$ and $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. We define a new function by 'averaging v with respect to ψ :'

$$
\begin{equation*}
v * \psi(x)=\int_{\mathbb{R}^{n}} v(x-y) \psi(y) d y \tag{8.3}
\end{equation*}
$$

The integral converges by dominated convergence, namely $\psi(y)$ is integrable and v is bounded,

$$
|v(x-y) \psi(y)| \leq\|v\|_{\mathcal{C}_{0}^{0}}|\psi(y)|
$$

We can use the same sort of estimates to show that $v * \psi$ is continuous. Fix $x \in \mathbb{R}^{n}$,

$$
\begin{align*}
v * \psi\left(x+x^{\prime}\right)-v * \psi(x) & \tag{8.4}\\
& =\int\left(v\left(x+x^{\prime}-y\right)-v(x-y)\right) \psi(y) d y
\end{align*}
$$

To see that this is small for x^{\prime} small, we split the integral into two pieces. Since ψ is very small near infinity, given $\epsilon>0$ we can choose R so large that

$$
\begin{equation*}
\|v\|_{\infty} \cdot \int_{\mid y] \mid \geq R}|\psi(y)| d y \leq \epsilon / 4 \tag{8.5}
\end{equation*}
$$

The set $|y| \leq R$ is compact and if $|x| \leq R^{\prime},\left|x^{\prime}\right| \leq 1$ then $\left|x+x^{\prime}-y\right| \leq$ $R+R^{\prime}+1$. A continuous function is uniformly continuous on any
compact set, so we can chose $\delta>0$ such that

$$
\begin{equation*}
\sup _{\substack{\left|x^{\prime}\right|<\delta \\|y| \leq R}}\left|v\left(x+x^{\prime}-y\right)-v(x-y)\right| \cdot \int_{|y| \leq R}|\psi(y)| d y<\epsilon / 2 . \tag{8.6}
\end{equation*}
$$

Combining (8.5) and (8.6) we conclude that $v * \psi$ is continuous. Finally, we conclude that

$$
\begin{equation*}
v \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right) \Rightarrow v * \psi \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right) \tag{8.7}
\end{equation*}
$$

For this we need to show that $v * \psi$ is small at infinity, which follows from the fact that v is small at infinity. Namely given $\epsilon>0$ there exists $R>0$ such that $|v(y)| \leq \epsilon$ if $|y| \geq R$. Divide the integral defining the convolution into two

$$
\begin{aligned}
|v * \psi(x)| \leq \int_{|y|>R} u(y) \psi(x-y) d y+ & \int_{y<R}|u(y) \psi(x-y)| d y \\
& \leq \epsilon / 2\|\psi\|_{\infty}+\|u\|_{\infty} \sup _{B(x, R)}|\psi| .
\end{aligned}
$$

Since $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ the last constant tends to 0 as $|x| \rightarrow \infty$.
We can do much better than this! Assuming $\left|x^{\prime}\right| \leq 1$ we can use Taylor's formula with remainder to write

$$
\begin{equation*}
\psi\left(z+x^{\prime}\right)-\psi(z)=\int_{0}^{\prime} \frac{d}{d t} \psi\left(z+t x^{\prime}\right) d t=\sum_{j=1}^{n} x_{j} \cdot \tilde{\psi}_{j}\left(z, x^{\prime}\right) \tag{8.8}
\end{equation*}
$$

As Problem 23 I ask you to check carefully that

$$
\begin{equation*}
\psi_{j}\left(z ; x^{\prime}\right) \in \mathcal{S}\left(\mathbb{R}^{n}\right) \text { depends continuously on } x^{\prime} \text { in }\left|x^{\prime}\right| \leq 1 \tag{8.9}
\end{equation*}
$$

Going back to (8.3))we can use the translation and reflection-invariance of Lebesgue measure to rewrite the integral (by changing variable) as

$$
\begin{equation*}
v * \psi(x)=\int_{\mathbb{R}^{n}} v(y) \psi(x-y) d y \tag{8.10}
\end{equation*}
$$

This reverses the role of v and ψ and shows that if both v and ψ are in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ then $v * \psi=\psi * v$.

Using this formula on (8.4) we find

$$
\begin{align*}
& v * \psi\left(x+x^{\prime}\right)-v * \psi(x)=\int v(y)\left(\psi\left(x+x^{\prime}-y\right)-\psi(x-y)\right) d y \tag{8.11}\\
& \quad=\sum_{j=1}^{n} x_{j} \int_{\mathbb{R}^{n}} v(y) \tilde{\psi}_{j}\left(x-y, x^{\prime}\right) d y=\sum_{j=1}^{n} x_{j}\left(v * \psi_{j}\left(\cdot ; x^{\prime}\right)(x) .\right.
\end{align*}
$$

From (8.9) and what we have already shown, $v * \psi\left(\cdot ; x^{\prime}\right)$ is continuous in both variables, and is in $\mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$ in the first. Thus

$$
\begin{equation*}
v \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right), \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \Rightarrow v * \psi \in \mathcal{C}_{0}^{1}\left(\mathbb{R}^{n}\right) \tag{8.12}
\end{equation*}
$$

In fact we also see that

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}} v * \psi=v * \frac{\partial \psi}{\partial x_{j}} \tag{8.13}
\end{equation*}
$$

Thus $v * \psi$ inherits its regularity from ψ.
Proposition 8.1. If $v \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$ and $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ then

$$
\begin{equation*}
v * \psi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)=\bigcap_{k \geq 0} \mathcal{C}_{0}^{k}\left(\mathbb{R}^{n}\right) \tag{8.14}
\end{equation*}
$$

Proof. This follows from (8.12), (8.13) and induction.
Now, let us make a more special choice of ψ. We have shown the existence of

$$
\begin{equation*}
\varphi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right), \varphi \geq 0, \operatorname{supp}(\varphi) \subset\{|x| \leq 1\} \tag{8.15}
\end{equation*}
$$

We can also assume $\int_{\mathbb{R}^{n}} \varphi d x=1$, by multiplying by a positive constant.
Now consider

$$
\begin{equation*}
\varphi_{t}(x)=t^{-n} \varphi\left(\frac{x}{t}\right) 1 \geq t>0 \tag{8.16}
\end{equation*}
$$

This has all the same properties, except that

$$
\begin{equation*}
\operatorname{supp} \varphi_{t} \subset\{|x| \leq t\}, \int \varphi_{t} d x=1 \tag{8.17}
\end{equation*}
$$

Proposition 8.2. If $v \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$ then as $t \rightarrow 0, v_{t}=v * \varphi_{t} \rightarrow v$ in $\mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$.

Proof. using (8.17) we can write the difference as

$$
\begin{align*}
\left|v_{t}(x)-v(x)\right|=\mid \int_{\mathbb{R}^{n}}(v(x-y)- & v(x)) \varphi_{t}(y) d y \mid \tag{8.18}\\
& \leq \sup _{|y| \leq t}|v(x-y)-v(x)| \rightarrow 0
\end{align*}
$$

Here we have used the fact that $\varphi_{t} \geq 0$ has support in $|y| \leq t$ and has integral 1 . Thus $v_{t} \rightarrow v$ uniformly on any set on which v is uniformly continuous, namel \mathbb{R}^{n} !

Corollary 8.3. $\mathcal{C}_{0}^{k}\left(\mathbb{R}^{n}\right)$ is dense in $\mathcal{C}_{0}^{p}\left(\mathbb{R}^{n}\right)$ for any $k \geq p$.
Proposition 8.4. $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is dense in $\mathcal{C}_{0}^{k}\left(\mathbb{R}^{n}\right)$ for any $k \geq 0$.

Proof. Take $k=0$ first. The subspace $\mathcal{C}_{c}^{0}\left(\mathbb{R}^{n}\right)$ is dense in $\mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$, by cutting off outside a large ball. If $v \in \mathcal{C}_{c}^{0}\left(\mathbb{R}^{n}\right)$ has support in $\{|x| \leq R\}$ then

$$
v * \varphi_{t} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

has support in $\{|x| \leq R+1\}$. Since $v * \varphi_{t} \rightarrow v$ the result follows for $k=0$.

For $k \geq 1$ the same argument works, since $D^{\alpha}\left(v * \varphi_{t}\right)=\left(D^{\alpha} V\right) *$ φ_{t}.
Corollary 8.5. The map from finite Radon measures

$$
\begin{equation*}
M_{f i n}\left(\mathbb{R}^{n}\right) \ni \mu \longmapsto u_{\mu} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \tag{8.19}
\end{equation*}
$$

is injective.
Now, we want the same result for $L^{2}\left(\mathbb{R}^{n}\right)$ (and maybe for $L^{p}\left(\mathbb{R}^{n}\right)$, $1 \leq p<\infty)$. I leave the measure-theoretic part of the argument to you.

Proposition 8.6. Elements of $L^{2}\left(\mathbb{R}^{n}\right)$ are "continuous in the mean" i.e.,

$$
\begin{equation*}
\lim _{|t| \rightarrow 0} \int_{\mathbb{R}^{n}}|u(x+t)-u(x)|^{2} d x=0 \tag{8.20}
\end{equation*}
$$

This is Problem 24.
Using this we conclude that

$$
\begin{equation*}
\mathcal{S}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{2}\left(\mathbb{R}^{n}\right) \text { is dense } \tag{8.21}
\end{equation*}
$$

as before. First observe that the space of L^{2} functions of compact support is dense in $L^{2}\left(\mathbb{R}^{n}\right)$, since

$$
\lim _{R \rightarrow \infty} \int_{|x| \geq R}|u(x)|^{2} d x=0 \forall u \in L^{2}\left(\mathbb{R}^{n}\right)
$$

Then look back at the discussion of $v * \varphi$, now v is replaced by $u \in$ $L_{c}^{2}\left(\mathbb{R}^{n}\right)$. The compactness of the support means that $u \in L^{1}\left(\mathbb{R}^{n}\right)$ so in

$$
\begin{equation*}
u * \varphi(x)=\int_{\mathbb{R}^{n}} u(x-y) \varphi(y) d y \tag{8.22}
\end{equation*}
$$

the integral is absolutely convergent. Moreover

$$
\begin{aligned}
& \left|u * \varphi\left(x+x^{\prime}\right)-u * \varphi(x)\right| \\
& =\left|\int u(y)\left(\varphi\left(x+x^{\prime}-y\right)-\varphi(x-y)\right) d y\right| \\
& \quad \leq C\|u\| \sup _{|y| \leq R}\left|\varphi\left(x+x^{\prime}-y\right)-\varphi(x-y)\right| \rightarrow 0
\end{aligned}
$$

when $\{|x| \leq R\}$ large enough. Thus $u * \varphi$ is continuous and the same argument as before shows that

$$
u * \varphi_{t} \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Now to see that $u * \varphi_{t} \rightarrow u$, assuming u has compact support (or not) we estimate the integral

$$
\begin{aligned}
\left|u * \varphi_{t}(x)-u(x)\right| & =\left|\int(u(x-y)-u(x)) \varphi_{t}(y) d y\right| \\
& \leq \int|u(x-y)-u(x)| \varphi_{t}(y) d y
\end{aligned}
$$

Using the same argument twice

$$
\begin{aligned}
& \int\left|u * \varphi_{t}(x)-u(x)\right|^{2} d x \\
& \leq \iiint|u(x-y)-u(x)| \varphi_{t}(y)\left|u\left(x-y^{\prime}\right)-u(x)\right| \varphi_{t}\left(y^{\prime}\right) d x d y d y^{\prime} \\
& \quad \leq\left(\int|u(x-y)-u(x)|^{2} \varphi_{t}(y) \varphi_{t}\left(y^{\prime}\right) d x d y d y^{\prime}\right) \\
& \quad \leq \sup _{|y| \leq t} \int|u(x-y)-u(x)|^{2} d x
\end{aligned}
$$

Note that at the second step here I have used Schwarz's inequality with the integrand written as the product

$$
|u(x-y)-u(x)| \varphi_{t}^{1 / 2}(y) \varphi_{t}^{1 / 2}\left(y^{\prime}\right) \cdot\left|u\left(x-y^{\prime}\right)-u(x)\right| \varphi_{t}^{1 / 2}(y) \varphi_{t}^{1 / 2}\left(y^{\prime}\right) .
$$

Thus we now know that

$$
L^{2}\left(\mathbb{R}^{n}\right) \hookrightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \text { is injective. }
$$

This means that all our usual spaces of functions 'sit inside' $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
Finally we can use convolution with φ_{t} to show the existence of smooth partitions of unity. If $K \Subset U \subset \mathbb{R}^{n}$ is a compact set in an open set then we have shown the existence of $\xi \in \mathcal{C}_{c}^{0}\left(\mathbb{R}^{n}\right)$, with $\xi=1$ in some neighborhood of K and $\xi=1$ in some neighborhood of K and $\operatorname{supp}(\xi) \Subset U$.

Then consider $\xi * \varphi_{t}$ for t small. In fact

$$
\operatorname{supp}\left(\xi * \varphi_{t}\right) \subset\left\{p \in \mathbb{R}^{n} ; \operatorname{dist}(p, \operatorname{supp} \xi) \leq 2 t\right\}
$$

and similarly, $0 \leq \xi * \varphi_{t} \leq 1$ and

$$
\xi * \varphi_{t}=1 \text { at } p \text { if } \xi=1 \text { on } B(p, 2 t) .
$$

Using this we get:

Proposition 8.7. If $U_{a} \subset \mathbb{R}^{n}$ are open for $a \in A$ and $K \Subset \bigcup_{a \in A} U_{a}$ then there exist finitely many $\varphi_{i} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, with $0 \leq \varphi_{i} \leq 1$, $\operatorname{supp}\left(\varphi_{i}\right) \subset$ $U_{a_{i}}$ such that $\sum_{i} \varphi_{i}=1$ in a neighbourhood of K.
Proof. By the compactness of K we may choose a finite open subcover. Using Lemma 1.8 we may choose a continuous partition, ϕ_{i}^{\prime}, of unity subordinate to this cover. Using the convolution argument above we can replace ϕ_{i}^{\prime} by $\phi_{i}^{\prime} * \varphi_{t}$ for $t>0$. If t is sufficiently small then this is again a partition of unity subordinate to the cover, but now smooth.

Next we can make a simple 'cut off argument' to show
Lemma 8.8. The space $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ of \mathcal{C}^{∞} functions of compact support is dense in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
Proof. Choose $\varphi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\varphi(x)=1$ in $|x| \leq 1$. Then given $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ consider the sequence

$$
\psi_{n}(x)=\varphi(x / n) \psi(x) .
$$

Clearly $\psi_{n}=\psi$ on $|x| \leq n$, so if it converges in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ it must converge to ψ. Suppose $m \geq n$ then by Leibniz's formula ${ }^{13}$

$$
\begin{aligned}
& D_{x}^{\alpha}\left(\psi_{n}(x)-\psi_{m}(x)\right) \\
&=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} D_{x}^{\beta}\left(\varphi\left(\frac{x}{n}\right)-\varphi\left(\frac{x}{m}\right)\right) \cdot D_{x}^{\alpha-\beta} \psi(x) .
\end{aligned}
$$

All derivatives of $\varphi(x / n)$ are bounded, independent of n and $\psi_{n}=\psi_{m}$ in $|x| \leq n$ so for any p

$$
\left|D_{x}^{\alpha}\left(\psi_{n}(x)-\psi_{m}(x)\right)\right| \leq\left\{\begin{array}{cl}
0 & |x| \leq n \\
C_{\alpha, p}\langle x\rangle^{-2 p} & |x| \geq n
\end{array} .\right.
$$

Hence ψ_{n} is Cauchy in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
Thus every element of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is determined by its restriction to $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. The support of a tempered distribution was defined above to be

$$
\begin{equation*}
\operatorname{supp}(u)=\left\{x \in \mathbb{R}^{n} ; \exists \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right), \varphi(x) \neq 0, \varphi u=0\right\}^{\complement} \tag{8.23}
\end{equation*}
$$

Using the preceding lemma and the construction of smooth partitions of unity we find
Proposition 8.9. $f u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\operatorname{supp}(u)=\emptyset$ then $u=0$.

[^0]Proof. From (8.23), if $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right), \operatorname{supp}(\psi u) \subset \operatorname{supp}(u)$. If $x \ni \operatorname{supp}(u)$ then, by definition, $\varphi u=0$ for some $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $\varphi(x) \neq 0$. Thus $\varphi \neq 0$ on $B(x, \epsilon)$ for $\epsilon>0$ sufficiently small. If $\psi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ has support in $B(x, \epsilon)$ then $\psi u=\tilde{\psi} \varphi u=0$, where $\tilde{\psi} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$:

$$
\tilde{\psi}=\left\{\begin{array}{cl}
\psi / \varphi & \text { in } B(x, \epsilon) \\
0 & \text { elsewhere }
\end{array}\right.
$$

Thus, given $K \Subset \mathbb{R}^{n}$ we can find $\varphi_{j} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, supported in such balls, so that $\sum_{j} \varphi_{j} \equiv 1$ on K but $\varphi_{j} u=0$. For given $\mu \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ apply this to $\operatorname{supp}(\mu)$. Then

$$
\mu=\sum_{j} \varphi_{j} \mu \Rightarrow u(\mu)=\sum_{j}\left(\phi_{j} u\right)(\mu)=0 .
$$

Thus $u=0$ on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, so $u=0$.
The linear space of distributions of compact support will be denoted $\mathcal{C}_{c}^{-\infty}\left(\mathbb{R}^{n}\right)$; it is often written $\mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$.

Now let us give a characterization of the 'delta function'

$$
\delta(\varphi)=\varphi(0) \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right),
$$

or at least the one-dimensional subspace of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ it spans. This is based on the simple observation that $\left(x_{j} \varphi\right)(0)=0$ if $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$!
Proposition 8.10. If $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ satisfies $x_{j} u=0, j=1, \cdots, n$ then $u=c \delta$.

Proof. The main work is in characterizing the null space of δ as a linear functional, namely in showing that

$$
\begin{equation*}
\mathcal{H}=\left\{\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) ; \varphi(0)=0\right\} \tag{8.24}
\end{equation*}
$$

can also be written as

$$
\begin{equation*}
\mathcal{H}=\left\{\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) ; \varphi=\sum_{j=1}^{n} x_{j} \psi_{j}, \varphi_{j} \in \mathcal{S}\left(\mathbb{R}^{n}\right)\right\} \tag{8.25}
\end{equation*}
$$

Clearly the right side of (8.25) is contained in the left. To see the converse, suppose first that

$$
\begin{equation*}
\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right), \varphi=0 \text { in }|x|<1 \tag{8.26}
\end{equation*}
$$

Then define

$$
\psi= \begin{cases}0 & |x|<1 \\ \varphi /|x|^{2} & |x| \geq 1\end{cases}
$$

All the derivatives of $1 /|x|^{2}$ are bounded in $|x| \geq 1$, so from Leibniz's formula it follows that $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Since

$$
\varphi=\sum_{j} x_{j}\left(x_{j} \psi\right)
$$

this shows that φ of the form (8.26) is in the right side of (8.25). In general suppose $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Then

$$
\begin{gather*}
\varphi(x)-\varphi(0)=\int_{0}^{t} \frac{d}{d t} \varphi(t x) d t \\
=\sum_{j=1}^{n} x_{j} \int_{0}^{t} \frac{\partial \varphi}{\partial x_{j}}(t x) d t . \tag{8.27}
\end{gather*}
$$

Certainly these integrals are \mathcal{C}^{∞}, but they may not decay rapidly at infinity. However, choose $\mu \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\mu=1$ in $|x| \leq 1$. Then (8.27) becomes, if $\varphi(0)=0$,

$$
\begin{aligned}
\varphi & =\mu \varphi+(1-\mu) \varphi \\
& =\sum_{j=1}^{n} x_{j} \psi_{j}+(1-\mu) \varphi, \psi_{j}=\mu \int_{0}^{t} \frac{\partial \varphi}{\partial x_{j}}(t x) d t \in \mathcal{S}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

Since $(1-\mu) \varphi$ is of the form (8.26), this proves (8.25).
Our assumption on u is that $x_{j} u=0$, thus

$$
u(\varphi)=0 \forall \varphi \in \mathcal{H}
$$

by (8.25). Choosing μ as above, a general $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ can be written

$$
\varphi=\varphi(0) \cdot \mu+\varphi^{\prime}, \varphi^{\prime} \in \mathcal{H}
$$

Then

$$
u(\varphi)=\varphi(0) u(\mu) \Rightarrow u=c \delta, c=u(\mu)
$$

This result is quite powerful, as we shall soon see. The Fourier transform of an element $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ is ${ }^{14}$

$$
\begin{equation*}
\hat{\varphi}(\xi)=\int e^{-i x \cdot \xi} \varphi(x) d x, \xi \in \mathbb{R}^{n} \tag{8.28}
\end{equation*}
$$

[^1]The integral certainly converges, since $|\varphi| \leq C\langle x\rangle^{-n-1}$. In fact it follows easily that $\hat{\varphi}$ is continuous, since

$$
\begin{aligned}
\left|\hat{\varphi}(\xi)-\hat{\varphi}\left(\xi^{\prime}\right)\right| \in \int \mid e^{i x-\xi} & -e^{-x \cdot \xi^{\prime}}| | \varphi \mid d x \\
& \rightarrow 0 \text { as } \xi^{\prime} \rightarrow \xi
\end{aligned}
$$

In fact
Proposition 8.11. Fourier transformation, (8.28), defines a continuous linear map

$$
\begin{equation*}
\mathcal{F}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right), \mathcal{F} \varphi=\hat{\varphi} \tag{8.29}
\end{equation*}
$$

Proof. Differentiating under the integral ${ }^{15}$ sign shows that

$$
\partial_{\xi_{j}} \hat{\varphi}(\xi)=-i \int e^{-i x \cdot \xi} x_{j} \varphi(x) d x
$$

Since the integral on the right is absolutely convergent that shows that (remember the i 's)

$$
\begin{equation*}
D_{\xi_{j}} \hat{\varphi}=-\widehat{x_{j} \varphi}, \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{8.30}
\end{equation*}
$$

Similarly, if we multiply by ξ_{j} and observe that $\xi_{j} e^{-i x \cdot \xi}=i \frac{\partial}{\partial x_{j}} e^{-i x \cdot \xi}$ then integration by parts shows

$$
\begin{align*}
\xi_{j} \hat{\varphi} & =i \int\left(\frac{\partial}{\partial x_{j}} e^{-i x \cdot \xi}\right) \varphi(x) d x \tag{8.31}\\
& =-i \int e^{-i x \cdot \xi} \frac{\partial \varphi}{\partial x_{j}} d x \\
\widehat{D_{j} \varphi} & =\xi_{j} \hat{\varphi}, \quad \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) .
\end{align*}
$$

Since $x_{j} \varphi, D_{j} \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ these results can be iterated, showing that

$$
\begin{equation*}
\xi^{\alpha} D_{\xi}^{\beta} \hat{\varphi}=\mathcal{F}\left((-1)^{|\beta|} D^{\alpha}{ }_{x} x^{\beta} \varphi\right) \tag{8.32}
\end{equation*}
$$

Thus $\left|\xi^{\alpha} D_{\xi}^{\beta} \hat{\varphi}\right| \leq C_{\alpha \beta}$ sup $\left|\langle x\rangle^{+n+1} D^{\alpha}{ }_{x} x^{\beta} \varphi\right| \leq C\left\|\langle x\rangle^{n+1+|\beta|} \varphi\right\|_{\mathcal{C}^{|\alpha|} \mid}$, which shows that \mathcal{F} is continuous as a map (8.32).

Suppose $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Since $\hat{\varphi} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ we can consider the distribution $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
u(\varphi)=\int_{\mathbb{R}^{n}} \hat{\varphi}(\xi) d \xi \tag{8.33}
\end{equation*}
$$

[^2]The continuity of u follows from the fact that integration is continuous and (8.29). Now observe that

$$
\begin{aligned}
u\left(x_{j} \varphi\right) & =\int_{\mathbb{R}^{n}} \widehat{x_{j} \varphi}(\xi) d \xi \\
& =-\int_{\mathbb{R}^{n}} D_{\xi_{j}} \hat{\varphi} d \xi=0
\end{aligned}
$$

where we use (8.30). Applying Proposition 8.10 we conclude that $u=$ $c \delta$ for some (universal) constant c. By definition this means

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \hat{\varphi}(\xi) d \xi=c \varphi(0) \tag{8.34}
\end{equation*}
$$

So what is the constant? To find it we need to work out an example. The simplest one is

$$
\varphi=\exp \left(-|x|^{2} / 2\right)
$$

Lemma 8.12. The Fourier transform of the Gaussian $\exp \left(-|x|^{2} / 2\right)$ is the Gaussian $(2 \pi)^{n / 2} \exp \left(-|\xi|^{2} / 2\right)$.

Proof. There are two obvious methods - one uses complex analysis (Cauchy's theorem) the other, which I shall follow, uses the uniqueness of solutions to ordinary differential equations.

First observe that $\exp \left(-|x|^{2} / 2\right)=\prod_{j} \exp \left(-x_{j}^{2} / 2\right)$. Thus ${ }^{16}$

$$
\hat{\varphi}(\xi)=\prod_{j=1}^{n} \hat{\psi}\left(\xi_{j}\right), \psi(x)=e^{-x^{2} / 2}
$$

being a function of one variable. Now ψ satisfies the differential equation

$$
\left(\partial_{x}+x\right) \psi=0
$$

and is the only solution of this equation up to a constant multiple. By (8.30) and (8.31) its Fourier transform satisfies

$$
\widehat{\partial_{x} \psi}+\widehat{x \psi}=i \xi \hat{\psi}+i \frac{d}{d \xi} \hat{\varphi}=0 .
$$

This is the same equation, but in the ξ variable. Thus $\hat{\psi}=c e^{-|\xi|^{2} / 2}$. Again we need to find the constant. However,

$$
\hat{\psi}(0)=c=\int e^{-x^{2} / 2} d x=(2 \pi)^{1 / 2}
$$

[^3]by the standard use of polar coordinates:
$$
c^{2}=\int_{\mathbb{R}^{n}} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y=\int_{0}^{\infty} \int_{0}^{2 \pi} e^{-r^{2} / 2} r d r d \theta=2 \pi .
$$

This proves the lemma.

Thus we have shown that for any $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \hat{\varphi}(\xi) d \xi=(2 \pi)^{n} \varphi(0) \tag{8.35}
\end{equation*}
$$

Since this is true for $\varphi=\exp \left(-|x|^{2} / 2\right)$. The identity allows us to invert the Fourier transform.

[^0]: ${ }^{13}$ Problem 25.

[^1]: ${ }^{14}$ Normalizations vary, but it doesn't matter much.

[^2]: ${ }^{15}$ See [5]

[^3]: ${ }^{16}$ Really by Fubini's theorem, but here one can use Riemann integrals.

