MATH 18.152-PROBLEM SET 8

18.152 Introduction to PDEs, Fall 2011

Problem Set 8, Due: at the start of class on 11-10-11

I. Consider the energy-momentum tensor corresponding to the linear wave equation: $T_{\mu \nu} \stackrel{\text { def }}{=}$ $\partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m_{\mu \nu}\left(m^{-1}\right)^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \phi$, and assume that $\left|\nabla_{t, x} \phi\right| \stackrel{\text { def }}{=} \sqrt{\left(\partial_{t} \phi\right)^{2}+\sum_{i=1}^{n}\left(\partial_{i} \phi\right)^{2}} \neq 0$. Here, $\left(m^{-1}\right)^{\mu \nu}=\operatorname{diag}(-1,1,1, \cdots, 1)$ is the standard Minkowski metric on \mathbb{R}^{1+n}. Let X, Y be future-directed timelike vectors (i.e., $m(X, X)<0, m(Y, Y)<0, X^{0}>0$, and $Y^{0}>0$). Show that

$$
\begin{equation*}
T(X, Y) \stackrel{\text { def }}{=} T_{\alpha \beta} X^{\alpha} Y^{\beta}>0 . \tag{0.0.1}
\end{equation*}
$$

Hint: First show that if L and \underline{L} are any pair of null vectors normalized by $m(L, \underline{L})=-2$, then $T(L, L) \geq 0, T(\underline{L}, \underline{L}) \geq 0, T(L, \underline{L}) \geq 0$, and that at least one of these three must be non-zero. To prove these facts, it might be helpful to supplement the vectors L and \underline{L} with some vectors $e_{(1)}, \cdots, e_{(n-1)}$ in order to form a null frame $\mathcal{N} \stackrel{\text { def }}{=}\left\{L, \underline{L}, e_{(1)}, \cdots, e_{(n-1)}\right\}$; the calculations will be much easier to do relative to the basis \mathcal{N} compared to the standard basis for \mathbb{R}^{1+n}. Recall that $\mathcal{N} \stackrel{\text { def }}{=}\left\{L, \underline{L}, e_{(1)}, \cdots, e_{(n-1)}\right\}$ is any basis for \mathbb{R}^{1+n} such that $0=m(L, L)=m(\underline{L}, \underline{L})=m\left(L, e_{(i)}\right)=m\left(\underline{L}, e_{(i)}\right)$ for $1 \leq i \leq n-1$, such that $m(L, \underline{L})=-2$, such that $m\left(e_{(i)}, e_{(j)}\right)=1$ if $i=j$, and such that $m\left(e_{(i)}, e_{(j)}\right)=0$ if $i \neq j$; as we discussed in class, given any null pair L, \underline{L} normalized by $m(L, \underline{L})=-2$, there exists such a null frame \mathcal{N} containing L and \underline{L}. Recall also that $\left(m^{-1}\right)^{\mu \nu}=-\frac{1}{2} L^{\mu} \underline{L}^{\nu}-\frac{1}{2} \underline{L}^{\mu} L^{\nu}+\not m^{\mu \nu}$, where $\not m^{\mu \nu}$ is positive definite on $\operatorname{span}\left\{e_{(1)}, \cdots, e_{(n-1)}\right\}, \not m^{\mu \nu}$ vanishes on $\operatorname{span}\{L, \underline{L}\}$, and $\not m\left(L, e_{(i)}\right)=$ $m\left(\underline{L}, e_{(i)}\right)=0$ for $1 \leq i \leq n-1$.

To tackle the case of general X and Y, use Problem \mathbf{V} from last week.
Remark 0.0.1. Inequality (0.0.1) also holds if X, Y are past-directed timelike vectors (i.e., $m(X, X)<0, m(Y, Y)<0, X^{0}<0$, and $\left.Y^{0}<0\right)$.
II. Consider the Morawetz vectorfield \bar{K}^{μ} on R^{1+3} defined by

$$
\begin{align*}
& \bar{K}^{0}=1+t^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2} \tag{0.0.2}\\
& \bar{K}^{j}=2 t x^{j}
\end{align*} \quad(j=1,2,3) .
$$

a) Show that \bar{K} is future-directed and timelike. Above, $\left(t, x^{1}, x^{2}, x^{3}\right)$ are the standard coordinates on R^{1+3}.
b) Show that

$$
\begin{equation*}
\partial_{\mu} \bar{K}_{\nu}+\partial_{\nu} \bar{K}_{\mu}=4 t m_{\mu \nu}, \quad(\mu, \nu=0,1,2,3) \tag{0.0.4}
\end{equation*}
$$

where $m_{\mu \nu}$ denotes the Minkowski metric.

Remark 0.0.2. \bar{K} is said to be a conformal Killing field of the Minkowski metric because the right-hand side of (0.0.4) is proportional to $m_{\mu \nu}$.
c) Show that

$$
\begin{equation*}
m_{\mu \nu} T^{\mu \nu}=0 \tag{0.0.5}
\end{equation*}
$$

where $T^{\mu \nu} \stackrel{\text { def }}{=}\left(m^{-1}\right)^{\mu \alpha}\left(m^{-1}\right)^{\nu \beta} T_{\alpha \beta}$ is the energy-momentum tensor from Problem \mathbf{I} with its indices raised. Note that the formula (0.0.5) only holds in $1+3$ spacetime dimensions.
d) Show that $\partial_{\mu}{ }^{(\bar{K})} J^{\mu}=0$ whenever ϕ is a solution to the linear wave equation $\left(m^{-1}\right)^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi=0$, where

$$
\begin{equation*}
(\bar{K}) J^{\mu} \stackrel{\text { def }}{=}-T^{\mu \nu} \bar{K}_{\nu} \tag{0.0.6}
\end{equation*}
$$

e) Show that

$$
\begin{equation*}
{ }^{(\bar{K})} J^{0}=\frac{1}{4}\left\{\left[1+(t+r)^{2}\right]\left(\nabla_{L} \phi\right)^{2}+\left[1+(t-r)^{2}\right]\left(\nabla_{\underline{L}} \phi\right)^{2}+2\left[1+t^{2}+r^{2}\right] \not m^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right\} . \tag{0.0.7}
\end{equation*}
$$

Above, $\left(m^{-1}\right)^{\mu \nu}=-\frac{1}{2} L^{\mu} \underline{L}^{\nu}-\frac{1}{2} \underline{L}^{\mu} L^{\nu}+\not m^{\mu \nu}$ is the standard null decomposition of $\left(m^{-1}\right)^{\mu \nu}$ from class. In particular, $L^{\mu}=\left(1, \frac{x^{1}}{r}, \frac{x^{2}}{r}, \frac{x^{3}}{r}\right), \underline{L}^{\mu}=\left(1,-\frac{x^{1}}{r},-\frac{x^{2}}{r},-\frac{x^{3}}{r}\right), \nabla_{L} \phi=\partial_{t} \phi+\partial_{r} \phi$, $\nabla_{\underline{L}} \phi=\partial_{t} \phi-\partial_{r} \phi$, and $\not m^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi$ is the square of the Euclidean norm of the angular derivatives of ϕ. Here, $r \stackrel{\text { def }}{=} \sqrt{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}}$ denotes the standard spherical coordinate on \mathbb{R}^{3}, and ∂_{r} denotes the standard radial derivative.
Hint: The following expansions in terms of L and \underline{L} may be very helpful:

$$
\begin{equation*}
\bar{K}^{\mu}=\frac{1}{2}\left\{\left[1+(r+t)^{2}\right] L^{\mu}+\left[1+(r-t)^{2}\right] \underline{L}^{\mu}\right\} \tag{0.0.8}
\end{equation*}
$$

$(1,0,0,0)=\frac{1}{2}\left(L^{\mu}+\underline{L}^{\nu}\right)$,

$$
\begin{align*}
(\bar{K}) & J^{0} \tag{0.0.10}
\end{align*}=T\left(\bar{K}, \frac{1}{2}(L+\underline{L})\right) .
$$

f) Finally, with the help of the vectorfield ${ }^{(\bar{K})} J^{\mu}$, apply the divergence theorem on an appropriately chosen spacetime region and use the previous results to derive the following conservation law for smooth solutions to the linear wave equation $\left(m^{-1}\right)^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi=0$:
(0.0.11)

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}} \frac{1}{4}\left\{\left[1+(t+r)^{2}\right]\left(\nabla_{L} \phi(t, x)\right)^{2}+\left[1+(t-r)^{2}\right]\left(\nabla_{\underline{L}} \phi(t, x)\right)^{2}+2\left[1+t^{2}+r^{2}\right] \not m^{\mu \nu} \partial_{\mu} \phi(t, x) \partial_{\nu} \phi(t, x)\right\} d^{3} x \\
& =\int_{\mathbb{R}^{3}} \frac{1}{4}\left\{\left[1+r^{2}\right]\left(\nabla_{L} \phi(0, x)\right)^{2}+\left[1+r^{2}\right]\left(\nabla_{\underline{L}} \phi(0, x)\right)^{2}+2\left[1+r^{2}\right] \not m^{\mu \nu} \partial_{\mu} \phi(0, x) \partial_{\nu} \phi(0, x)\right\} d^{3} x .
\end{aligned}
$$

For simplicity, at each fixed t, you may assume that there exists an $R>0$ such that $\phi(t, x)$ vanishes whenever $|x| \geq R$.

Remark 0.0.3. Note that the right-hand side of (0.0.11) can be computed in terms of the initial data alone. Note also that the different null derivatives of ϕ appearing on the lefthand side of $(0.0 .11)$ carry different weights. In particular, $\nabla_{L} \phi$ and the angular derivatives of ϕ have larger weights than $\nabla_{\underline{L}} \phi$. These larger weights are strongly connected to the following fact, whose full proof requires additional methods going beyond this course: $\nabla_{L} \phi$ and the angular derivatives of ϕ decay faster in t compared to $\nabla_{\underline{L}} \phi$.

MIT OpenCourseWare
http://ocw.mit.edu

18.152 Introduction to Partial Differential Equations.

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

