MATH 18.152 - PROBLEM SET 2

18.152 Introduction to PDEs, Fall 2011

Professor: Jared Speck

Problem Set 2, Due: at the start of class on 9-22-11

- **I**. Problem **2.1** on pg. 97.
- **II**. Problem **2.3** on pg. 97 (the book forgot to tell you to set $L = \pi$ and U = 0).
- III. Consider the solution $u(t,x) = \sum_{m=1}^{\infty} (-1)^{m+1} e^{-m^2 \pi^2 t} \frac{2}{m\pi} \sin(m\pi x)$ to the initial-boundary value heat equation problem

$$\begin{cases} \partial_t u - \partial_x^2 u = 0, & (t, x) \in (0, \infty) \times (0, 1), \\ u(0, x) = x, & x \in [0, 1], \\ u(t, 0) = u(t, 1) = 0, & t \in (0, \infty), \end{cases}$$

as discussed in class. Show that

(0.1)
$$\lim_{t \downarrow 0} \|u(t,x) - x\|_{L^2([0,1])} = 0,$$

where the L^2 norm is taken over the x variable only. Feel free to make use of the "Some basic facts from Fourier analysis" theorem discussed in class.

Remark 0.0.1. This problem shows that even though there is a pointwise discontinuity at (0,1), the solution is nonetheless "continuous in t at t=0" with respect to the $L^2([0,1])$ spatial norm.

IV. Let $\ell > 0$ be a positive real number. Let $S \stackrel{\text{def}}{=} (0, \infty) \times (0, \ell)$, and let $u(t, x) \in C^{1,2}(\overline{S})$ be the solution of the initial-boundary value problem

(0.2)
$$\begin{cases} \partial_t u - \partial_x^2 u = 0, & (t, x) \in S, \\ u(0, x) = \ell^{-2} x(\ell - x), & x \in [0, \ell], \\ u(t, 0) = 0, & u(t, \ell) = 0, & t \in (0, \infty). \end{cases}$$

In this problem, you will use the energy method to show that the spatial L^2 norm of udecays exponentially without actually having to solve the PDE.

First show that $||u(0,\cdot)||_{L^2([0,\ell])} = \sqrt{\frac{\ell}{30}}$. Here, the notation $||u(0,\cdot)||_{L^2([0,\ell])}$ is meant to emphasize that the L^2 norm is taken over the spatial variable x only.

Next, show that $\frac{d}{dt} \left(\|u(t,\cdot)\|_{L^2([0,\ell])}^2 \right) = -2 \|\partial_x u(t,\cdot)\|_{L^2([0,\ell])}^2$.

Then show that $||u(t,\cdot)||_{C^0([0,\ell])} \leq \sqrt{\ell} ||\partial_x u(t,\cdot)||_{L^2([0,\ell])}$ (Hint: Use the Fundamental theorem of calculus in x and the Cauchy-Schwarz inequality with one of the functions equal to 1.).

Then conclude that $||u(t,\cdot)||_{L^2}^2 \leq \ell^2 ||\partial_x u(t,\cdot)||_{L^2([0,\ell])}^2$. Using a previous part of this problem, we conclude that $\frac{d}{dt} (||u(t,\cdot)||_{L^2([0,1])}^2) \leq -2\frac{1}{\ell^2} ||u(t,\cdot)||_{L^2([0,\ell])}^2$.

Finally, integrate this differential inequality in time and use the initial conditions at t = 0to conclude that $||u(t,\cdot)||_{L^2([0,1])} \leq \sqrt{\frac{\ell}{30}} e^{-t\ell^{-2}}$ for all $t \geq 0$.

V. In this problem, you will derive a very important solution to the heat equation on \mathbb{R}^{1+1} :

(0.3)
$$\partial_t u - D\partial_x^2 u = 0, \qquad (t, x) \in (0, \infty) \times \mathbb{R}.$$

The special solution u(t, x) will be known as the fundamental solution, and it plays a very important role in the theory of the heat equation on $(0,\infty) \times \mathbb{R}$. We demand that our fundamental solution u(t, x) should have the following properties:

•
$$u(t,x) \ge 0$$

- $\int_{\mathbb{R}} u(t, x) dx = 1$ for all t > 0• $\lim_{x \to \pm \infty} u(t, x) = 0$ for all t > 0
- u(t, x) = u(t, -x) for all t > 0

To see that such a solution exists, first make the assumption that $u(t,x) = \frac{1}{\sqrt{Dt}}V(\zeta)$, where $\zeta \stackrel{\text{def}}{=} \frac{x}{\sqrt{Dt}}$ and $V(\zeta)$ is a function that is (hopefully) defined for all $\zeta \in \mathbb{R}$; we will motivate this assumption in class. Show that if u verifies (0.3), then V must satisfy the ODE

(0.4)
$$\frac{d}{d\zeta}(V'(\zeta) + \frac{1}{2}\zeta V(\zeta)) = 0.$$

Then, using the above demands, argue that $V(\zeta) = V(-\zeta)$, V'(0) = 0, and $\lim_{\zeta \to \pm} V(\zeta) = 0$. Also using (0.4), argue that

(0.5)
$$V'(\zeta) + \frac{1}{2}\zeta V(\zeta) = 0.$$

Integrate (0.5) to conclude that $V(\zeta) = V(0)e^{-\frac{1}{4}\zeta^2}$, which implies that

(0.6)
$$u(t,x) = \frac{1}{\sqrt{Dt}}V(0)e^{-\frac{x^2}{4Dt}}.$$

Finally, use the second demand from above to conclude that $V(0) = \frac{1}{\sqrt{4\pi}}$.

18.152 Introduction to Partial Differential Equations. Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.