MATH 18.152-PROBLEM SET 2

18.152 Introduction to PDEs, Fall 2011

Problem Set 2, Due: at the start of class on 9-22-11

I. Problem 2.1 on pg. 97.
II. Problem 2.3 on pg. 97 (the book forgot to tell you to set $L=\pi$ and $U=0$).
III. Consider the solution $u(t, x)=\sum_{m=1}^{\infty}(-1)^{m+1} e^{-m^{2} \pi^{2} t} \frac{2}{m \pi} \sin (m \pi x)$ to the initial-boundary value heat equation problem

$$
\left\{\begin{array}{lr}
\partial_{t} u-\partial_{x}^{2} u=0, & (t, x) \in(0, \infty) \times(0,1) \\
u(0, x)=x, & x \in[0,1] \\
u(t, 0)=u(t, 1)=0, & t \in(0, \infty)
\end{array}\right.
$$

as discussed in class. Show that

$$
\begin{equation*}
\lim _{t \downarrow 0}\|u(t, x)-x\|_{L^{2}([0,1])}=0 \tag{0.1}
\end{equation*}
$$

where the L^{2} norm is taken over the x variable only. Feel free to make use of the "Some basic facts from Fourier analysis" theorem discussed in class.

Remark 0.0.1. This problem shows that even though there is a pointwise discontinuity at $(0,1)$, the solution is nonetheless "continuous in t at $t=0$ " with respect to the $L^{2}([0,1])$ spatial norm.
IV. Let $\ell>0$ be a positive real number. Let $S \stackrel{\text { def }}{=}(0, \infty) \times(0, \ell)$, and let $u(t, x) \in C^{1,2}(\bar{S})$ be the solution of the initial-boundary value problem

$$
\left\{\begin{array}{lr}
\partial_{t} u-\partial_{x}^{2} u=0, & (t, x) \in S \tag{0.2}\\
u(0, x)=\ell^{-2} x(\ell-x), & x \in[0, \ell] \\
u(t, 0)=0, \quad u(t, \ell)=0, & t \in(0, \infty)
\end{array}\right.
$$

In this problem, you will use the energy method to show that the spatial L^{2} norm of u decays exponentially without actually having to solve the PDE.

First show that $\|u(0, \cdot)\|_{L^{2}([0, \ell])}=\sqrt{\frac{\ell}{30}}$. Here, the notation $\|u(0, \cdot)\|_{L^{2}([0, \ell])}$ is meant to emphasize that the L^{2} norm is taken over the spatial variable x only.

Next, show that $\frac{d}{d t}\left(\|u(t, \cdot)\|_{L^{2}([0, \ell])}^{2}\right)=-2\left\|\partial_{x} u(t, \cdot)\right\|_{L^{2}([0, \ell])}^{2}$.
Then show that $\|u(t, \cdot)\|_{C^{0}([0, \ell])} \leq \sqrt{\ell}\left\|\partial_{x} u(t, \cdot)\right\|_{L^{2}([0, \ell])}$ (Hint: Use the Fundamental theorem of calculus in x and the Cauchy-Schwarz inequality with one of the functions equal to 1.).

Then conclude that $\|u(t, \cdot)\|_{L^{2}}^{2} \leq \ell^{2}\left\|\partial_{x} u(t, \cdot)\right\|_{L^{2}([0, \ell] .}^{2}$. Using a previous part of this problem, we conclude that $\frac{d}{d t}\left(\|u(t, \cdot)\|_{L^{2}([0,1])}^{2}\right) \leq-2 \frac{1}{\ell^{2}}\|u(t, \cdot)\|_{L^{2}([0, \ell])}^{2}$.

Finally, integrate this differential inequality in time and use the initial conditions at $t=0$ to conclude that $\|u(t, \cdot)\|_{L^{2}([0,1])} \leq \sqrt{\frac{\ell}{30}} e^{-t \ell^{-2}}$ for all $t \geq 0$.
\mathbf{V}. In this problem, you will derive a very important solution to the heat equation on \mathbb{R}^{1+1} :

$$
\begin{equation*}
\partial_{t} u-D \partial_{x}^{2} u=0, \quad(t, x) \in(0, \infty) \times \mathbb{R} \tag{0.3}
\end{equation*}
$$

The special solution $u(t, x)$ will be known as the fundamental solution, and it plays a very important role in the theory of the heat equation on $(0, \infty) \times \mathbb{R}$. We demand that our fundamental solution $u(t, x)$ should have the following properties:

- $u(t, x) \geq 0$
- $\int_{\mathbb{R}} u(t, x) d x=1$ for all $t>0$
- $\lim _{x \rightarrow \pm \infty} u(t, x)=0$ for all $t>0$
- $u(t, x)=u(t,-x)$ for all $t>0$

To see that such a solution exists, first make the assumption that $u(t, x)=\frac{1}{\sqrt{D t}} V(\zeta)$, where $\zeta \stackrel{\text { def }}{=} \frac{x}{\sqrt{D t}}$ and $V(\zeta)$ is a function that is (hopefully) defined for all $\zeta \in \mathbb{R}$; we will motivate this assumption in class. Show that if u verifies (0.3), then V must satisfy the ODE

$$
\begin{equation*}
\frac{d}{d \zeta}\left(V^{\prime}(\zeta)+\frac{1}{2} \zeta V(\zeta)\right)=0 \tag{0.4}
\end{equation*}
$$

Then, using the above demands, argue that $V(\zeta)=V(-\zeta), V^{\prime}(0)=0$, and $\lim _{\zeta \rightarrow \pm} V(\zeta)=0$.
Also using (0.4), argue that

$$
\begin{equation*}
V^{\prime}(\zeta)+\frac{1}{2} \zeta V(\zeta)=0 \tag{0.5}
\end{equation*}
$$

Integrate (0.5) to conclude that $V(\zeta)=V(0) e^{-\frac{1}{4} \zeta^{2}}$, which implies that

$$
\begin{equation*}
u(t, x)=\frac{1}{\sqrt{D t}} V(0) e^{-\frac{x^{2}}{4 D t}} \tag{0.6}
\end{equation*}
$$

Finally, use the second demand from above to conclude that $V(0)=\frac{1}{\sqrt{4 \pi}}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.152 Introduction to Partial Differential Equations.

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

