MATH 18.152-OPTIONAL BONUS PROBLEM

18.152 Introduction to PDEs, Fall 2011

Professor: Jared Speck

Optional Bonus Problem, Due: at the start of class on 11-29-11

I. Consider the Morawetz vectorfield \bar{K}^{μ} on R^{1+3} defined by

$$
\begin{align*}
& \bar{K}^{0}=1+t^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2} \tag{0.0.1}\\
& \bar{K}^{j}=2 t x^{j} \tag{0.0.2}
\end{align*} \quad(j=1,2,3) .
$$

a) Show that \bar{K} is future-directed and timelike. Above, $\left(t, x^{1}, x^{2}, x^{3}\right)$ are the standard coordinates on R^{1+3}.
b) Show that

$$
\begin{equation*}
\partial_{\mu} \bar{K}_{\nu}+\partial_{\nu} \bar{K}_{\mu}=4 t m_{\mu \nu}, \quad(\mu, \nu=0,1,2,3) \tag{0.0.3}
\end{equation*}
$$

where $m_{\mu \nu}$ denotes the Minkowski metric.
Remark 0.0.1. \bar{K} is said to be a conformal Killing field of the Minkowski metric because the right-hand side of (0.0.3) is proportional to $m_{\mu \nu}$.
c) Show that

$$
\begin{equation*}
m_{\mu \nu} T^{\mu \nu}=-\left(m^{-1}\right)^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \phi \tag{0.0.4}
\end{equation*}
$$

where $T_{\mu \nu} \stackrel{\text { def }}{=} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m_{\mu \nu}\left(m^{-1}\right)^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \phi$ is the energy-momentum tensor corresponding to the linear wave equation, and $T^{\mu \nu} \stackrel{\text { def }}{=}\left(m^{-1}\right)^{\mu \alpha}\left(m^{-1}\right)^{\nu \beta} T_{\alpha \beta}$ is the energy-momentum tensor with its indices raised.
d) Show that $\partial_{\mu}{ }^{(\bar{K})} J^{\mu}=2 t\left(m^{-1}\right)^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \phi$ whenever ϕ is a C^{2} solution to the linear wave equation $\left(m^{-1}\right)^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi=0$, where

$$
\begin{equation*}
{ }^{(\bar{K})} J^{\mu} \stackrel{\text { def }}{=}-T^{\mu \nu} \bar{K}_{\nu} \tag{0.0.5}
\end{equation*}
$$

e) Show that $\partial_{\mu} \widetilde{J}^{\mu}=0$ whenever ϕ is a C^{2} solution to the linear wave equation $\left(m^{-1}\right)^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi=$ 0 , where

$$
\begin{equation*}
\widetilde{J}^{\mu} \stackrel{\text { def }}{=}(\bar{K}) J^{\mu}-2 t \phi\left(m^{-1}\right)^{\mu \alpha} \partial_{\alpha} \phi+\phi^{2}\left(m^{-1}\right)^{\mu \alpha} \partial_{\alpha} t \tag{0.0.6}
\end{equation*}
$$

f) Show that

$$
\begin{equation*}
{ }^{(\bar{K})} J^{0}=\frac{1}{4}\left\{\left[1+(t+r)^{2}\right]\left(\nabla_{L} \phi\right)^{2}+\left[1+(t-r)^{2}\right]\left(\nabla_{\underline{L}} \phi\right)^{2}+2\left[1+t^{2}+r^{2}\right] \not m^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right\} . \tag{0.0.7}
\end{equation*}
$$

Above, $\left(m^{-1}\right)^{\mu \nu}=-\frac{1}{2} L^{\mu} \underline{L}^{\nu}-\frac{1}{2} \underline{L}^{\mu} L^{\nu}+\not m^{\mu \nu}$ is the standard null decomposition of $\left(m^{-1}\right)^{\mu \nu}$ from class. In particular, $L^{\mu}=\left(1, \frac{x^{1}}{r}, \frac{x^{2}}{r}, \frac{x^{3}}{r}\right), \underline{L}^{\mu}=\left(1,-\frac{x^{1}}{r},-\frac{x^{2}}{r},-\frac{x^{3}}{r}\right), \nabla_{L} \phi=\partial_{t} \phi+\partial_{r} \phi$, $\nabla_{\underline{L}} \phi=\partial_{t} \phi-\partial_{r} \phi$, and $\not m^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi$ is the square of the Euclidean norm of the angular derivatives of ϕ. Here, $r \stackrel{\text { def }}{=} \sqrt{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}}$ denotes the standard spherical coordinate on \mathbb{R}^{3}, and ∂_{r} denotes the standard radial derivative.
Hint: The following expansions in terms of L and \underline{L} may be very helpful:

$$
\begin{equation*}
\bar{K}^{\mu}=\frac{1}{2}\left\{\left[1+(r+t)^{2}\right] L^{\mu}+\left[1+(r-t)^{2}\right] \underline{L}^{\mu}\right\} \tag{0.0.8}
\end{equation*}
$$

$(1,0,0,0)=\frac{1}{2}\left(L^{\mu}+\underline{L}^{\nu}\right)$,
${ }^{(\bar{K})} J^{0}=T\left(\bar{K}, \frac{1}{2}(L+\underline{L})\right)$ $=\frac{1}{4}\left\{\left[1+(r+t)^{2}\right] T(L, L)+\left[1+(r-t)^{2}\right] T(\underline{L}, \underline{L})+\left(\left[1+(r+t)^{2}\right]+\left[1+(r-t)^{2}\right]\right) T(L, \underline{L})\right\}$.
f)

Show that
$\widetilde{J}^{0}=\frac{1}{4}\left\{\left[1+(t+r)^{2}\right]\left(\nabla_{L} \phi\right)^{2}+\left[1+(t-r)^{2}\right]\left(\nabla_{\underline{L}} \phi\right)^{2}+2\left[1+t^{2}+r^{2}\right] \not m^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right\}+2 t \phi \partial_{t} \phi-\phi^{2}$.
g) Show that

$$
\begin{equation*}
-\int_{\mathbb{R}^{3}} \phi^{2} d^{3} x=\frac{2}{3} \int_{\mathbb{R}^{3}} r \phi \partial_{r} \phi d^{3} x \tag{0.0.12}
\end{equation*}
$$

whenever ϕ is a C^{1}, compactly supported function.
Hint: Use the identity $1=\partial_{r} r$ together with integration by parts in spherical coordinates and the fact that $d^{3} x=r^{2} \sin \theta d r d \theta d \phi$ in spherical coordinates.
h) Use parts \mathbf{f}) and \mathbf{g}) to show that

$$
\begin{equation*}
\widetilde{J}^{0}=\frac{1}{4}\left\{\left(\nabla_{L} \phi\right)^{2}+\left(\nabla_{L}[(t+r) \phi]\right)^{2}+\left(\nabla_{\underline{L}} \phi\right)^{2}+\left(\nabla_{\underline{L}}[(t-r) \phi]\right)^{2}+2\left[1+t^{2}+r^{2}\right] \not m^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right\} \tag{0.0.13}
\end{equation*}
$$

i) Finally, with the help of the vectorfield \widetilde{J}^{μ}, part e), and part h), apply the divergence theorem on an appropriately chosen spacetime region to derive the following conservation law for smooth solutions to the linear wave equation $\left(m^{-1}\right)^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi=0$:
(0.0.14)

$$
\begin{aligned}
& \frac{1}{4} \int_{\mathbb{R}^{3}}\left\{\left(\nabla_{L} \phi\right)^{2}+\left(\nabla_{L}[(t+r) \phi]\right)^{2}+\left(\nabla_{\underline{L}} \phi\right)^{2}+\left(\nabla_{\underline{L}}[(t-r) \phi]\right)^{2}+2\left[1+t^{2}+r^{2}\right] \not m^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right\} d^{3} x \\
& =\left.\frac{1}{4} \int_{\mathbb{R}^{3}}\left\{\left(\nabla_{L} \phi\right)^{2}+\left(\nabla_{L}[(t+r) \phi]\right)^{2}+\left(\nabla_{\underline{L}} \phi\right)^{2}+\left(\nabla_{\underline{L}}[(t-r) \phi]\right)^{2}+2\left[1+t^{2}+r^{2}\right] \not m^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right\} d^{3} x\right|_{t=0},
\end{aligned}
$$

where the left-hand side is evaluated at time t, and right-hand side is evaluated at time $t=0$. For simplicity, at each fixed t, you may assume that there exists an $R>0$ such that $\phi(t, x)$ vanishes whenever $|x| \geq R$.

Remark 0.0.2. Note that the right-hand side of (0.0.14) can be computed in terms of the initial data alone. Note also that the different null derivatives of ϕ appearing on the lefthand side of (0.0.14) carry different weights. In particular, $\nabla_{L} \phi$ and the angular derivatives of ϕ have larger weights than $\nabla_{\underline{L}} \phi$. These larger weights are strongly connected to the following fact, whose full proof requires additional methods going beyond this course: $\nabla_{L} \phi$ and the angular derivatives of ϕ decay faster in t compared to $\nabla_{\underline{L}} \phi$.

MIT OpenCourseWare
http://ocw.mit.edu

18.152 Introduction to Partial Differential Equations.

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

