MEASURE AND INTEGRATION: LECTURE 7

Review. The steps to defining Lebesgue measure. (1) measure of rectangles (2) measure of special polygons (3) measure of open sets: $\lambda(G)=\sup \{\lambda(P) \mid P \subset G, P$ special polygon $\}$. (4) measure of compact sets: $\lambda(K)=\inf \{\lambda(G) \mid K \subset G, G$ open $\}$. (5) Inner λ_{*} and outer λ^{*} measures.

Lebesgue measurable sets (with finite outer measure). Let $A \subset$ \mathbb{R}^{n} and $\lambda^{*}(A)<\infty$ (A has finite outer measure). Then we write that $A \in \mathcal{L}_{0} \Longleftrightarrow \lambda^{*}(A)=\lambda_{*}(A)$ and define measure of A to be

$$
\lambda(A)=\lambda^{*}(A)=\lambda_{*}(A)
$$

We know that \mathcal{L}_{0} contains all compact sets and open sets of finite measure.

Lemma 0.1. Let $A, B \in \mathcal{L}_{0}$. If A and B are disjoint, then $A \cup B \in \mathcal{L}_{0}$ and $\lambda(A \cup B)=\lambda(A)+\lambda(B)$.

Proof.

$$
\begin{aligned}
\lambda^{*}(A \cup B) & \leq \lambda^{*}(A)+\lambda^{*}(B) \quad \\
& =\lambda(A)+\lambda(B) \quad\left(A, B \in \mathcal{L}_{0}\right) \\
& =\lambda_{*}(A)+\lambda_{*}(B) \quad(\text { Property of inner measure }) \\
& \leq \lambda_{*}(A \cup B) \leq \lambda^{*}(A \cup B)
\end{aligned}
$$

Main approximation theorem.

Theorem 0.2. Let $A \in \mathbb{R}^{n}$ and $\lambda^{*}(A)<\infty$. Then $A \in \mathcal{L}_{0}$ if and only if for all $\epsilon>0$ there exists K compact and G open such that $K \subset A \subset G$ and $\lambda(G \backslash K)<\epsilon$.

Proof. If $A \in \mathcal{L}_{0}$, then there exists $G \supset A$ open such that $\lambda(G)<$ $\lambda^{*}(A)+\epsilon / 2$ and there exists $K \subset A$ compact such that $\lambda(K)>\lambda_{*}(A)-$ $\epsilon / 2$. Since $K \subset G$, we can write $G=K \cup(G \backslash K)$ as a disjoint union of sets in \mathcal{L}_{0}, and so $\lambda(G)=\lambda(K)+\lambda(G \backslash K)$. That is,

$$
\lambda(G \backslash K)=\lambda(G)-\lambda(K)<\lambda(A)+\epsilon / 2-(\lambda(A)-\epsilon / 2)=\epsilon
$$

Date: September 25, 2003.

For the other direction, fix $\epsilon>0$ and choose $K \subset A \subset G$ such that $\lambda(G \backslash K)<\epsilon$. Then

$$
\lambda^{*}(A) \leq \lambda(G)=\lambda(K)+\lambda(G \backslash K) \leq \lambda(K)+\epsilon \leq \lambda_{*}(A)+\epsilon
$$

Since this holds for any $\epsilon>0$, we have $\lambda^{*}(A) \leq \lambda_{*}(A) \leq \lambda^{*}(A)$, and hence $\lambda_{*}(A)=\lambda^{*}(A)$.

Corollary 0.3. If $A, B \in \mathcal{L}_{0}$, then $A \cup B, A \cap B$, and $A \backslash B$ are all in \mathcal{L}_{0}.

Proof. By the approximation theorem, for any $\epsilon>0$, we can find $K_{1} \subset$ $A \subset G_{1}$ and $K_{2} \subset B \subset G_{2}$ such hat $\lambda\left(G_{1} \backslash K_{1}\right)<\epsilon / 2$ and $\lambda\left(G_{2} \backslash K_{2}\right)<$ $\epsilon / 2$. Then $K_{1} \cup K_{2} \subset A \cup B \subset G_{1} \cup G_{2}$, and so

$$
\begin{aligned}
\left(G_{1} \cup G_{2}\right) \backslash\left(K_{1} \cup K_{2}\right) & =\left(G_{1} \cup G_{2}\right) \cap\left(K_{1} \cup K_{2}\right)^{c} \\
& =G_{1} \cap\left(K_{1} \cup K_{2}\right)^{c} \cup G_{2} \cap\left(K_{1} \cup K_{2}\right)^{c} \\
& \subset G_{1} \cap K_{1}^{c} \cup G_{2} \cap K_{2}^{c} \\
& =\left(G_{1} \backslash K_{1}\right) \cup\left(G_{2} \backslash K_{2}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\lambda\left(G_{1} \cup G_{2} \backslash\left(K_{1} \cup K_{2}\right)\right) & \leq \lambda\left(G_{1} \backslash K_{1}\right)+\lambda\left(G_{2} \backslash K_{2}\right) \\
& <\epsilon / 2+\epsilon / 2=\epsilon,
\end{aligned}
$$

and $A \cup B \in \mathcal{L}_{0}$. Let $K_{i}, G_{i}(i=1,2)$ be as before. Then $K_{1} \cap K_{2} \subset$ $A \cap B \subset G_{1} \cap G_{2}$. We have

$$
\begin{aligned}
\left(G_{1} \cap G_{2}\right) \backslash\left(K_{1} \cap K_{2}\right) & =\left(G_{1} \cap G_{2}\right) \cap\left(K_{1} \cap K_{2}\right)^{c} \\
& =\left(G_{1} \cap G_{2}\right) \cap\left(K_{1}^{c} \cup K_{2}^{c}\right) \\
& =\left(G_{1} \cap G_{2} \cap K_{1}^{c}\right) \cup\left(G_{1} \cap G_{2} \cap K_{2}^{c}\right) \\
& \subset\left(G_{1} \cap K_{1}^{c}\right) \cup\left(G_{2} \cap K_{2}^{c}\right) \\
& \subset\left(G_{1} \backslash K_{1}\right) \cup\left(G_{2} \backslash K_{2}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\lambda\left(G_{1} \cap G_{2} \backslash\left(K_{1} \cap K_{2}\right)\right) & <\lambda\left(G 1 \backslash K_{1}\right)+\lambda\left(G_{2} \backslash K_{2}\right) \\
& <\epsilon / 2+\epsilon / 2=\epsilon .
\end{aligned}
$$

The proof for $A \backslash B$ is similar.
Countable additivity. Let $A_{k} \in \mathcal{L}_{0}$ for $k=1,2, \ldots$ Let $A=\cup_{k=1}^{\infty} A_{k}$ and assume $\lambda^{*}(A)<\infty$. Then $A \in \mathcal{L}_{0}$ and $\lambda(A) \leq \sum_{k=1}^{\infty} \lambda\left(A_{k}\right)$. Furthermore, if the A_{k} 's are disjoint, then $\lambda(A)=\sum_{k=1}^{\infty} \lambda\left(A_{k}\right)$.

Proof. First, the disjoint case. We have

$$
\begin{aligned}
& \lambda^{*}(A) \leq \sum_{k=1}^{\infty} \lambda^{*}\left(A_{k}\right) \quad \text { (outer measure subadditivity) } \\
&=\sum_{k=1}^{\infty} \lambda_{*}\left(A_{k}\right) \quad\left(\text { each } A_{k} \in \mathcal{L}_{0}\right) \\
& \leq \lambda_{*}\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leq \lambda^{*}(A)
\end{aligned}
$$

Since $\lambda_{*}(A)=\lambda^{*}(A), A \in \mathcal{L}_{0}$, and it also follows that $\lambda(A)=\sum_{k=1}^{\infty} \lambda\left(A_{k}\right)$.
In general, rewrite A as a disjoint union as follows. Let $B_{1}=A_{1}$, $B_{2}=A_{2} \backslash A_{1}, B_{3}=A_{3} \backslash\left(A_{1} \cup A_{2}\right)$, and so on. Each $B_{k} \in \mathcal{L}_{0}$, clearly the B_{k} 's are disjoint. It is straightforward to check that $A=\cup_{k=1}^{\infty} B_{k}$: the fact that the union is a subset of A is obvious, and if $x \in A_{k}$, then $x \in B_{1}$ or B_{2} or $\ldots B_{k}$. From the preceding disjoint case we know that $\cup_{k=1}^{\infty} B_{k} \in \mathcal{L}_{0}$, and

$$
\lambda(A)=\lambda\left(\bigcup_{k=1}^{\infty} B_{k}\right)=\sum_{k=1}^{\infty} \lambda\left(B_{k}\right) \leq \sum_{k=1}^{\infty} \lambda\left(A_{k}\right)
$$

where in the last step we noticed that each $B_{k} \subset A_{k}$.
Extension to arbitrary measurable sets. Let $A \subset \mathbb{R}^{n}$. Then A is Lebesgue measurable (and we write $A \in \mathcal{L}$) if for all $M \in \mathcal{L}_{0}$, we have $A \cap M \in \mathcal{L}_{0}$. In this case, define

$$
\lambda(A)=\sup _{M \in \mathcal{L}_{0}}\{\lambda(A \cap M)\}
$$

Proposition 0.4. The new λ is consistent with all λ when $\lambda^{*}<\infty$. In other words, if $A \subset \mathbb{R}^{n}$ and $\lambda(A)<\infty$, then $A \in \mathcal{L}_{0} \Longleftrightarrow A \in \mathcal{L}$, and the definitions of $\lambda(A)$ agree.
Proof. If $A \in \mathcal{L}_{0}$, then the lemma implies that $A \cap M \in \mathcal{L}_{0}$ for all $M \in \mathcal{L}_{0} ;$ thus $A \in \mathcal{L}$. We know $B(0, k)$, the ball of radius k with center at the origin, is in \mathcal{L}_{0}. Let $A_{k}=A \cap B(0, k)$. Then by definition of \mathcal{L}, we have $A_{k} \in \mathcal{L}$. Also, $A=\cup_{k=1}^{\infty} A_{k} \in \mathcal{L}_{0}$ by the countable subadditivity theorem.

Next, take $A \in \mathcal{L}_{0}$. Let $\tilde{\lambda}(A)$ to be the new definition, that is,

$$
\tilde{\lambda}(A)=\sup _{M \in \mathcal{L}_{0}}\{\lambda(A \cap M)\}
$$

Then $A \cap M \subset \Rightarrow \lambda(A \cap M) \leq \lambda(A) \Rightarrow \tilde{\lambda}(A) \leq \lambda(A)$. Since $A \in \mathcal{L}_{0}$, choose $M=A$ in definition of $\tilde{\lambda}$. Then $\tilde{\lambda}(A) \geq \lambda(A)$, and thus equality must hold.

Properties of (arbitrary) Lebesgue measurable sets.

(1) $A \in \mathcal{L} \Rightarrow A^{c} \in \mathcal{L}_{0}$
(2) If $A_{i} \in L(i=1,2, \ldots)$, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{L}$.
(3) If A_{i} disjoint, then $\lambda\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \lambda\left(A_{i}\right)$.

Proof. (1) For $M \in \mathcal{L}_{0}$, NTS that $A^{c} \cap M \in \mathcal{L}_{0}$. We know $A \cap M \in$ \mathcal{L}_{0}. Since $A^{c} \cap M=M \backslash(A \cap M)$, and both $M \in \mathcal{L}_{0}$ and $A \cap M \in \mathcal{L}_{0}$, we are done.
(2) For $M \in \mathcal{L}_{0}, A_{i} \cap M \in \mathcal{L}_{0}$. We have $\left(\cup_{i=1}^{\infty} A_{i}\right) \cap M=\cup_{i=1}^{\infty}\left(A_{i} \cap\right.$ $M)$ and by countable additivity the last term is in \mathcal{L}_{0}.
(3) Let $A=\cup_{k=1}^{\infty} A_{k}$. Then $A \cap M=\cup_{k=1}^{\infty}\left(A_{k} \cap M\right)$ is a disjoint union. Thus, $\lambda(A \cap M)=\sum_{k=1}^{\infty} \lambda\left(A_{k} \cap M\right) \leq \sum_{k=1}^{\infty} \lambda\left(A_{k}\right)$. Taking sup over all M gives $\lambda(A) \leq \sum_{k=1}^{\infty} \lambda\left(A_{k}\right)$. For the other direction, fix N. Let $M_{1}, \ldots, M_{N} \in \mathcal{L}_{0}$ be arbitrary and put $M=\cup_{k=1}^{N} M_{k}$. Then

$$
\begin{aligned}
\lambda(A) \geq \lambda(A \cap M) & =\lambda\left(\bigcup_{k=1}^{\infty}\left(A_{k} \cap M\right)\right) \\
& =\sum_{k=1}^{\infty} \lambda\left(A_{k} \cap M\right) \\
& \geq \sum_{k=1}^{N} \lambda\left(A_{k} \cap M\right) \\
& \geq \sum_{k=1}^{N} \lambda\left(A_{k} \cap M_{k}\right) .
\end{aligned}
$$

Since M_{k} are arbitrary, taking sup over all M_{k} gives $\lambda(A) \geq$ $\sum_{k=1}^{N} \lambda\left(A_{k}\right)$ Letting $N \rightarrow \infty, \lambda(A) \geq \sum_{k=1}^{\infty} \lambda\left(A_{k}\right)$.

Corollary 0.5. By (1) and (2), \mathcal{L} is a σ-algebra.
Corollary 0.6. By (3), λ is a positive measure on \mathcal{L}, and thus $\left(\mathbb{R}^{n}, \mathcal{L}, \lambda\right)$ is a measure space.

