MEASURE AND INTEGRATION: LECTURE 5

Definition of L^{1}. Let $f: X \rightarrow[-\infty, \infty]$ be measurable. We say that f is in L^{1} (written $f \in L^{1}(\mu)$ or simply $f \in L^{1}$) $\Longleftrightarrow \int_{X} f^{+} d \mu<\infty$ and $\int_{X} f^{-} d \mu \infty \Longleftrightarrow \int_{X}|f| d \mu<\infty$. Define

$$
\int_{X} f d \mu=\int_{X} f^{+} d \mu-\int_{X} f^{-} d \mu
$$

when at least one of the terms on the right-hand side is finite.
Integral of complex functions. Let $f: X \rightarrow \mathbb{C}$ be measurable. That is, $f=u+i v$ where $u, v: X \rightarrow \mathbb{R}$ are measurable. Then

$$
\begin{aligned}
f \in L^{1}(\mu) & \Longleftrightarrow \int_{X}|F| d \mu<\infty \\
& \Longleftrightarrow \int_{X}|u| d \mu<\infty \text { and } \int_{X}|v| d \mu<\infty
\end{aligned}
$$

Define

$$
\begin{aligned}
\int_{X} f d \mu & =\int_{X} u d \mu+i \int_{X} v d \mu \\
& =\int_{X} u^{+} d \mu-\int_{X} u^{-} d \mu+i \int_{X} v^{+} d \mu-i \int_{X} v^{-} d \mu
\end{aligned}
$$

Theorem 0.1. Let $f, g \in L^{1}(\mu)$. If $\alpha, \beta \in \mathbb{C}$, then $\alpha f+\beta g \in L^{1}(\mu)$ and

$$
\int_{X}(\alpha f+\beta g) d \mu=\alpha \int_{X} f d \mu+\beta \int_{X} g d \mu
$$

Proof. First, $\alpha f+\beta g$ is measurable, and by the triangle inequality, $|\alpha f+\beta g| \leq|\alpha||f|+|\beta||g|$, so

$$
\int_{X}|\alpha f+\beta g| \leq|\alpha| \int_{X}|f|+|\beta| \int_{X}|g|<\infty .
$$

Just need to show that
(1) $\int_{X}(f+g) d \mu=\int_{X} f d \mu+\int_{X} g d \mu$, and
(2) $\int_{X}(\alpha f) d \mu=\alpha \int_{X} f d \mu$.

[^0]For (1), assume f, g real; the complex case follows from the real case. Let $h=f+g$. Then $h^{+}-h^{-}=f^{+}-f^{-}+g^{+}-g^{-}$, so $h^{+}+f^{-}+g^{-}=$ $f^{+}+g^{+}+h^{-}$. Since the integral is linear for non-negative functions,

$$
\begin{gathered}
\int h^{+}+\int f^{-}+\int g^{-}=\int f^{+}+\int g^{+}+\int h^{-} \Rightarrow \\
\int h^{+}-\int h^{-}=\int f^{+}-\int f^{-}+\int g^{+}-\int g^{-}
\end{gathered}
$$

Thus, $\int f+g=\int f+\int g$.
For (2), let $\alpha=a+b i$ for $a, b \in \mathbb{R}$. Then

$$
\begin{aligned}
\int \alpha f=\int(a+b i)(u+i v) & =\int a u+a i v+b i u-b v \\
& =\int(a u-b v+i(a v+b u) \\
& =\int(a u-b v)+i \int(a v+b u)
\end{aligned}
$$

Also,

$$
\begin{aligned}
(a+b i) \int(u+i v) & =(a+b i)\left(\int u+i \int v\right) \\
& =a \int u+b i \int u+a i \int v-b \int v
\end{aligned}
$$

So, just need to show that $\int a u=a \int u$. If $a=0$, then both sides vanish. If $a>0$, then

$$
\begin{aligned}
\int(a u) & =\int(a u)^{+}-\int(a u)^{-} \\
& =\int a \cdot u^{+}-\int a \cdot u^{-} \\
& =a \int u^{+}-a \int u^{-}=a \int u .
\end{aligned}
$$

If $a<0$, then

$$
\begin{aligned}
\int a u & =\int(a u)^{+}-\int(a u)^{-} \\
& =\int(-a) \cdot u^{-}-\int(-a) \cdot u^{+} \\
& =-a \int u^{-}-(-a) \int u^{+} \\
& =a\left(\int u^{+}-\int u^{-}\right)=a \int u
\end{aligned}
$$

Theorem 0.2. If $f \in L^{1}(\mu)$, then

$$
\left|\int_{X} f d \mu\right| \leq \int_{X}|f| d \mu
$$

Proof. For some $\theta \in[0,2 \pi)$,

$$
\int_{X} f d \mu=\left|\int_{X} f d \mu\right| e^{i \theta}
$$

Hence,

$$
\begin{aligned}
\left|\int_{X} f d \mu\right|=e^{-i \theta} \int_{X} f d \mu & =\int_{X}\left(e^{-i \theta} f\right) d \mu \\
& =\operatorname{Re}\left(\int_{X} e^{-i \theta} f\right) d \mu \\
& =\int_{X} \operatorname{Re}\left(e^{-i \theta} f\right) d \mu \\
& \leq \int_{X}\left|e^{-i \theta} f\right| d \mu=\int_{X}|f| d \mu
\end{aligned}
$$

Dominated convergence.

Theorem 0.3. Let $f_{n}: X \rightarrow \mathbb{C}$ be a sequence of measurable functions, and assume that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ (that is, the sequence f_{n} converges pointwise). If there exists $g \in L^{1}(\mu)$ such that $\left|f_{n}(x)\right| \leq g(x)$ for all n and for all $x \in X$, then $f \in L^{1}(\mu)$ and

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| d \mu=0, \text { so } \lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

Proof. Since $\left|f_{n}(x)\right| \leq g(x)$ for all n, the limit f has the property that $|f| \leq|g(x)|$. This means that $\int|f| \leq \int|g|<\infty$, so $f \in L^{1}(\mu)$. Next, $\left|f_{n}-f\right| \leq\left|f_{n}\right|+|f| \leq 2 g$, which means that $2 g-\left|f_{n}-f\right| \geq 0$. Applying Fatou's lemma,

$$
\begin{aligned}
\int_{X} 2 g d \mu & \leq \liminf \int_{X}\left(2 g-\left|f_{n}-f\right|\right) d \mu \\
& =\int_{X} 2 g d \mu+\lim \inf \int_{X}-\left|f_{n}-f\right| d \mu \\
& =\int_{X} 2 g d \mu-\limsup \int_{X}\left|f_{n}-f\right| d \mu
\end{aligned}
$$

Since $\int_{X} 2 g<\infty$, it can be cancelled from both sides. Thus,

$$
\limsup \int_{X}\left|f_{n}-f\right| d \mu \leq 0
$$

and so

$$
\lim \int_{X}\left|f_{n}-f\right| d \mu=0
$$

From the previous theorem,

$$
\begin{aligned}
& \left|\int_{X}\left(f_{n}-f\right) d \mu\right| \leq \int_{X}\left|f_{n}-f\right| d \mu \\
\Rightarrow & \left|\int_{X} f_{n} d \mu-\int_{X} f d \mu\right| \leq \int_{X}\left|f_{n}-f\right| d \mu \rightarrow 0 \\
\Rightarrow & \int_{X} f_{n} d \mu \rightarrow \int_{X} f d \mu
\end{aligned}
$$

Sets of measure zero. Let (X, \mathcal{M}, μ) be a measure space and $E \in$ \mathcal{M}. A set E has measure zero if and only if $\mu(E)=0$. If $f, g: X \rightarrow \mathbb{C}$, then $f=g$ almost everywhere (a.e.) if $N=\{x \mid f(x)=g(x)\}$ has measure zero. Define an equivalence relation $f \sim g$ if $f=g$ a.e.
Proposition 0.4. If $f \sim g$, then, for all $E \in \mathcal{M}, \int_{E} f d \mu=\int_{E} g d \mu$. Proof. Write E as disjoint union $E=(E \backslash N) \cup(E \cap N)$. Then, since $f=g$ away from N, and since N has measure zero,

$$
\begin{aligned}
\int_{E} f d \mu & =\int_{E \backslash N} f d \mu+\int_{E \cap N} f d \mu \\
& =\int_{E \backslash N} g d \mu+0=\int_{E} g d \mu .
\end{aligned}
$$

Completion of a σ-algebra.

Theorem 0.5. Let (X, \mathcal{M}, μ) be a measure space. Let

$$
\mathcal{M}^{*}=\{E \subset X \mid \exists A, B \in \mathcal{M}: A \subset E \subset B \& \mu(B \backslash A)=0\}
$$

Now define $\mu(E)=\mu(A)$ for all $E \in \mathcal{M}^{*}$. Then \mathcal{M}^{*} is a σ-algebra and this definition of μ is a measure.

The measure space $\left(X, \mathcal{M}^{*}, \mu\right)$ is a called the completion of the measure space (X, \mathcal{M}, μ). A measure space is complete if it is equal to its completion.

Note. If f is only defined a.e. (say, except for a set N of measure zero), then we can define $f(x)=0$ for all $x \in N . \Rightarrow \int f$ is well defined.

Theorem 0.6. (a) Let $f: X \rightarrow[0, \infty]$ be measurable, $E \in \mathcal{M}$, and $\int_{E} f d \mu=0$. Then $f=0$ a.e. on E.
(b) Let $f \in L^{1}(\mu)$ and $\int_{E} f d \mu=0$ for every $E \in \mathcal{M}$. Then $f=0$ a.e. on X.

Proof. (a) Let $A_{n}=\{x \in E \mid f(x)>1 / n\}$. Then

$$
\int_{E} f d \mu \geq \int_{A_{n}} f d \mu \geq \int_{A_{n}} 1 / n d \mu=\frac{1}{n} \mu\left(A_{n}\right)
$$

which implies that $\mu\left(A_{n}\right)=0$. But $\{x \mid f(x)>0\}=\cup_{i=1}^{\infty} A_{n}$ and $\mu(\{x \mid f(x)>0\}) \leq \sum_{i=1}^{\infty} \mu\left(A_{n}\right)=0$.
(b) Let $f=u+i v$. Choose $E=\{x \mid u(x) \geq 0\}$. Then $\int_{E} f=$ $\int_{E} u^{+}+i \int_{E} v \Rightarrow \int_{E} u^{+}=0$ and by (a), $u^{+}=0$ a.e.

Theorem 0.7. Let $E_{k} \in \mathcal{M}$ such that $\sum_{k=1}^{\infty} \mu\left(E_{k}\right)<\infty$. Then almost every $x \in X$ lie in at most finitely many E_{k}.

Proof. Let $A=\left\{x \in X \mid x \in E_{k}\right.$ for infinitely many $\left.k\right\}$. NTS $\mu(A)=0$. Let $g=\sum_{i=1}^{\infty} \chi_{E_{k}}$. Then $x \in A \Longleftrightarrow g(x)=\infty$. We have

$$
\int_{X} g d \mu=\sum_{i=1}^{\infty} \int_{X} \chi_{E_{k}} d \mu=\sum_{i=1}^{\infty} \mu\left(E_{k}\right)<\infty .
$$

In other words, $g \in L^{1}(\mu)$ and thus $g(x)<\infty$ a.e.

[^0]: Date: September 18, 2003.

