MEASURE AND INTEGRATION: LECTURE 24

INEQUALITIES

Generalized Minkowski inequality. Let $\mathbb{R}^n = \mathbb{R}^\ell \times \mathbb{R}^m$ and $z = (x, y) \in \mathbb{R}^n$. If $\mathbb{R}^n \to \mathbb{C}$ is measurable, then

$$\int_{\mathbb{R}^{\ell}} \left| f(x, y) \right|^p dx \colon \mathbb{R}^m \to \mathbb{R} = \left\| f_y \right\|_{L^p(\mathbb{R}^{\ell})} \colon \mathbb{R}^m \to \mathbb{R}$$

is \mathbb{R}^n -measurable for $1 \leq p < \infty$.

Assume that

$$\int_{\mathbb{R}^m} \|f_y\|_{L^p(\mathbb{R}^\ell)} \, dy < \infty.$$

Then for a.e. $x \in \mathbb{R}^{\ell}, f_x(y) \colon \mathbb{R}^m \to \mathbb{C}$ is in $L^1(\mathbb{R}^m)$. Let

$$F(x) = \int_{\mathbb{R}^m} f_x(y) \, dy.$$

Then $F(x) \colon \mathbb{R}^{\ell} \to \mathbb{C}$ is \mathbb{R}^{ℓ} -measurable and we have

$$\|F\|_{L^p(\mathbb{R}^\ell)} \le \int_{\mathbb{R}^m} \|f_y\|_{L^p(\mathbb{R}^\ell)} \, dy$$

Note this is

$$\left(\int_{\mathbb{R}^{\ell}} \left|\int_{\mathbb{R}^{m}} f(x,y) \, dy\right|^{p} \, dx\right)^{1/p} \leq \int_{\mathbb{R}^{m}} \left(\int_{\mathbb{R}^{\ell}} \left|f(x,y)\right|^{p} \, dx\right)^{1/p} \, dy.$$

We could replace by $X, Y \sigma$ -finite measure space and $Y = \{p_1, \ldots, p_n\}, dy$ the counting measure and get old Minkowski's.

Proof. We have

$$|F(x)| \le \int_{\mathbb{R}^m} |f_x(y)| \, dy,$$

so without loss of generality, assume $f \ge 0$. If p = 1, then Fubini's theorem applies; so now let p > 1.

Define $q: \mathbb{R}^{\ell} \times \mathbb{R}^m \to \mathbb{R}^{\geq 0}$ by

$$g(x,y) = \begin{cases} f(x,y) \|f_y\|_{L^p(\mathbb{R}^\ell)}^{-1/p'} & \text{if } 0 < \|f_y\|_p < \infty; \\ 0 & \text{if } \|f_y\|_p = 0; \\ \infty & \text{if } \|f_y\|_p = \infty. \end{cases}$$

Then, for each y,

Date: December 9, 2003.

(1)
$$f(x,y) \le g(x,y) \|f_y\|_p^{1/p'}$$
 for a.e. x , and
(2)

$$||g_y||_{L^p(\mathbb{R}^\ell)} = ||f_y||_p^{1/p}$$

Then

$$F(x) = \int_{\mathbb{R}^m} f(x, y) \, dy$$

$$\leq \int_{\mathbb{R}^m} g(x, y) \, \|f_y\|_p^{1/p'} \, dy$$

$$\leq \|g_x\|_{L^p(\mathbb{R}^m)} \left(\int \|f_y\|_p \, dy\right)^{1/p'}$$

$$= \|g_x\|_{L^p(\mathbb{R}^m)} \cdot C^{1/p'},$$

where $C = \int_{\mathbb{R}^m} \|f_y\|_p dy$. We now use Fubini's theorem:

$$\begin{split} \|F(x)\|_{L^{p}(\mathbb{R}^{\ell})}^{p} &\leq C^{p/p'} \int_{\mathbb{R}^{\ell}} \left(\|g_{x}\|_{L^{p}(\mathbb{R}^{m})}^{p} \right) dx \\ &= c^{p-1} \int_{\mathbb{R}^{\ell}} \left(\int_{\mathbb{R}^{m}} g(x, y)^{p} dy \right) dx \\ &= c^{p-1} \int_{\mathbb{R}^{m}} \left(\int_{\mathbb{R}^{\ell}} g(x, y)^{p} dx \right) dy \\ &= c^{p-1} \int_{\mathbb{R}^{m}} \|g_{y}\|_{L^{p}(\mathbb{R}^{\ell})}^{p} dy \\ &= c^{p-1} \int_{\mathbb{R}^{m}} \|f_{y}\|_{L^{p}(\mathbb{R}^{\ell})} dy \\ &= c^{p-1} c = c^{p} = \int_{\mathbb{R}^{m}} \|f_{y}\|_{L^{p}(\mathbb{R}^{\ell})} dy. \end{split}$$

Thus,

$$\|F(x)\|_{L^p(\mathbb{R}^\ell)} \le \int_{\mathbb{R}^m} \|f_y\|_{L^p(\mathbb{R}^\ell)} dy$$

and so

$$\left\|\int_{\mathbb{R}^m} f(x,y) \, dy\right\|_{L^p(\mathbb{R}^\ell)} \le \int_{\mathbb{R}^m} \|f_y\|_{L^p(\mathbb{R}^\ell)} \, dy.$$

_	_	_	
		1	
		1	
	_		

Application. Let $f \in L^1(\mathbb{R}^n \text{ and } g \in L^p(\mathbb{R}^n)$. Then $f * g \in L^p(\mathbb{R}^n)$ since

$$\begin{split} \left(\int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(y)g(x-y) \, dy \right|^p \, dx \right)^{1/p} \\ &\leq \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(y)g(x-y)|^p \, dx \right)^{1/p} \, dy \\ &= \int_{\mathbb{R}^n} |f(y)| \left(\int_{\mathbb{R}^n} |g(x-y)|^p \, dx \right)^{1/p} \, dy \\ &= \int_{\mathbb{R}^n} |f(y)| \, \|g\|_p \, dy \\ &= \|f\|_1 \, \|g\|_p \, . \end{split}$$

Distribution functions. Suppose $f: X \to [0, \infty]$ and let $\mu\{f > t\} = \mu(x \mid f(x) > t\}$.

Theorem 0.1.

$$\int_X f \ d\mu = \int_0^\infty \mu\{f > t\} \ dt$$

and

$$\int_{X} f^{p} d\mu = p \int_{0}^{\infty} \mu\{f > t\} t^{p-1} dt$$

More generally, if φ is differentiable, then

$$\int_X \varphi \circ f \ d\mu = \int_0^\infty \mu\{f > t\} \varphi'(t) \ dt.$$

Proof. We have

$$\int_{\mathbb{R}^n} |f| \ dx = \int_{\mathbb{R}^n} \left(\int_0^{|f(x)|} dt \right) \ dx$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}} \chi_{[0,f(x)]}(t) \ dt \ dx$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}^n} \chi_{[0,f(x)]}(t) \ dx \ dt$$

Then

$$\int_{\mathbb{R}^n} |f|^p \, dx = \int_0^\infty \mu\{|f|^p > t\} \, dt$$
$$= \int_0^\infty \mu\{|t| > t^{1/p}\} \, dt$$
$$= p \int_0^\infty \mu\{|f| > s\} s^{p-1} \, ds,$$

letting $s = t^{1/p}$, so $s^p = t$ and $dt = ps^{p-1}ds$.

Marcinkiewicz interpolation. Recall the maximal function

$$Mf(x) = \sup_{0 < r < \infty} \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |f(y)| dy.$$

Note if $f \in L^{\infty}$, then $||Mf||_{\infty} \leq ||f||_{\infty}$. Thus, M maps L^{∞} into itself: $M \colon L^{\infty} \to L^{\infty}$.

On the other hand, by Hardy-Littlewood, if $f \in L^1$, then

(0.1)
$$\mu\{Mf > t\} \le \frac{3^n}{t} \|f\|_1$$

and M maps L^1 to weak L^1 .

Using a method called Marcinkiewicz interpolation, we prove the following.

Theorem 0.2. Let $1 and <math>f \in L^p$. Then $Mf \in L^p$, and

(0.2)
$$||Mf||_p \le C(n,p) ||f||_p$$

where C(n,p) is bounded as $p \to \infty$ and $C(n,p) \to \infty$ as $p \to 1$.

Proof. Observe that Mf = M |f|, so assume $f \ge 0$. Choose a constant 0 < c < 1 (we will choose the best c later). For $t \in (0, \infty)$, write $f = g_t + h_t$, where

$$g_t(x) = \begin{cases} f(x) & f(x) > ct; \\ 0 & f(x) \le ct. \end{cases}$$

So, $0 \le h_t(x) \le ct$ for every x, and thus $h_t \in L^{\infty}$. We have

$$Mf \le Mg_t + Mh_t \le Mg_t + ct$$

from (0.2). Thus, $Mf - ct \leq Mg_t$, o if Mf(x) > t, then $(1 - c)t \leq Mg_t(x)$.

Let $E_t = \{f > ct\}$. Then

$$\begin{split} \lambda\{Mf > t\} &\leq \lambda\{Mg_t > (1-c)t\} \\ &\leq \frac{3^n}{(1-c)t} \|g_t\|_1 \quad \text{from (0.1)} \\ &= \frac{3^n}{(1-c)t} \int_{E_t} f \ dx. \end{split}$$

Thus,

$$\begin{split} \int_{\mathbb{R}^n} (Mf)^p \, dx &= p \int_0^\infty \lambda \{Mf > t\} t^{p-1} \, dt \\ &\leq \frac{3^n p}{1-c} \int_0^\infty t^{p-2} \left(\int_{E_t} f \, dx \right) \, dt \\ &= \frac{3^n p}{1-c} \int_{\mathbb{R}^n} \left(f(x) \int_0^{f(x)/c} t^{p-2} \, dt \right) \, dx \\ &= \frac{3^n p}{1-c} \int_{\mathbb{R}^n} f(x) \frac{1}{p-1} \left(\frac{f(x)}{c} \right)^{p-1} \, dx \\ &= \frac{3^n p}{1-c} \cdot \frac{c^{1-p}}{p-1} \int_{\mathbb{R}^n} f(x)^p \, dx \\ &= C(n,p) \, \|f\|_p^p. \end{split}$$

Thus,

$$\|Mf\|_{p} \leq \underbrace{\frac{3^{n}pc^{1-p}}{(1-c)(p-1)}^{1/p}}_{\to 1 \text{ as } p \to \infty} \|f\|_{p} \,.$$

Choose c = 1/p' = (p-1)/p; this gives the best constant.

5