MEASURE AND INTEGRATION: LECTURE 24

Inequalities

Generalized Minkowski inequality. Let $\mathbb{R}^{n}=\mathbb{R}^{\ell} \times \mathbb{R}^{m}$ and $z=$ $(x, y) \in \mathbb{R}^{n}$. If $\mathbb{R}^{n} \rightarrow \mathbb{C}$ is measurable, then

$$
\int_{\mathbb{R}^{e}}|f(x, y)|^{p} d x: \mathbb{R}^{m} \rightarrow \mathbb{R}=\left\|f_{y}\right\|_{L^{p}\left(\mathbb{R}^{e}\right)}: \mathbb{R}^{m} \rightarrow \mathbb{R}
$$

is \mathbb{R}^{n}-measurable for $1 \leq p<\infty$.
Assume that

$$
\int_{\mathbb{R}^{m}}\left\|f_{y}\right\|_{L^{p}\left(\mathbb{R}^{\ell}\right)} d y<\infty
$$

Then for a.e. $x \in \mathbb{R}^{\ell}, f_{x}(y): \mathbb{R}^{m} \rightarrow \mathbb{C}$ is in $L^{1}\left(\mathbb{R}^{m}\right)$. Let

$$
F(x)=\int_{\mathbb{R}^{m}} f_{x}(y) d y
$$

Then $F(x): \mathbb{R}^{\ell} \rightarrow \mathbb{C}$ is \mathbb{R}^{ℓ}-measurable and we have

$$
\|F\|_{L^{p}\left(\mathbb{R}^{\ell}\right)} \leq \int_{\mathbb{R}^{m}}\left\|f_{y}\right\|_{L^{p}\left(\mathbb{R}^{\ell}\right)} d y
$$

Note this is

$$
\left(\int_{\mathbb{R}^{\ell}}\left|\int_{\mathbb{R}^{m}} f(x, y) d y\right|^{p} d x\right)^{1 / p} \leq \int_{\mathbb{R}^{m}}\left(\int_{\mathbb{R}^{\ell}}|f(x, y)|^{p} d x\right)^{1 / p} d y
$$

We could replace by $X, Y \sigma$-finite measure space and $Y=\left\{p_{1}, \ldots, p_{n}\right\}$, $d y$ the counting measure and get old Minkowski's.

Proof. We have

$$
|F(x)| \leq \int_{\mathbb{R}^{m}}\left|f_{x}(y)\right| d y
$$

so without loss of generality, assume $f \geq 0$. If $p=1$, then Fubini's theorem applies; so now let $p>1$.

Define $g: \mathbb{R}^{\ell} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{\geq 0}$ by

$$
g(x, y)= \begin{cases}f(x, y)\left\|f_{y}\right\|_{L^{p}\left(\mathbb{R}^{\ell}\right)}^{-1 / p^{\prime}} & \text { if } 0<\left\|f_{y}\right\|_{p}<\infty ; \\ 0 & \text { if }\left\|f_{y}\right\|_{p}=0 \\ \infty & \text { if }\left\|f_{y}\right\|_{p}=\infty\end{cases}
$$

Then, for each y,
(1) $f(x, y) \leq g(x, y)\left\|f_{y}\right\|_{p}^{1 / p^{\prime}} \quad$ for a.e. x, and (2)

$$
\left\|g_{y}\right\|_{L^{p}\left(\mathbb{R}^{\ell}\right)}=\left\|f_{y}\right\|_{p}^{1 / p}
$$

Then

$$
\begin{aligned}
F(x) & =\int_{\mathbb{R}^{m}} f(x, y) d y \\
& \leq \int_{\mathbb{R}^{m}} g(x, y)\left\|f_{y}\right\|_{p}^{1 / p^{\prime}} d y \\
& \leq\left\|g_{x}\right\|_{L^{p}\left(\mathbb{R}^{m}\right)}\left(\int\left\|f_{y}\right\|_{p} d y\right)^{1 / p^{\prime}} \\
& =\left\|g_{x}\right\|_{L^{p}\left(\mathbb{R}^{m}\right)} \cdot C^{1 / p^{\prime}}
\end{aligned}
$$

where $C=\int_{\mathbb{R}^{m}}\left\|f_{y}\right\|_{p} d y$.
We now use Fubini's theorem:

$$
\begin{aligned}
\|F(x)\|_{L^{p}\left(\mathbb{R}^{\ell}\right)}^{p} & \leq C^{p / p^{\prime}} \int_{\mathbb{R}^{\ell}}\left(\left\|g_{x}\right\|_{L^{p}\left(\mathbb{R}^{m}\right)}^{p}\right) d x \\
& =c^{p-1} \int_{\mathbb{R}^{\ell}}\left(\int_{\mathbb{R}^{m}} g(x, y)^{p} d y\right) d x \\
& =c^{p-1} \int_{\mathbb{R}^{m}}\left(\int_{\mathbb{R}^{\ell}} g(x, y)^{p} d x\right) d y \\
& =c^{p-1} \int_{\mathbb{R}^{m}}\left\|g_{y}\right\|_{L^{p}\left(\mathbb{R}^{\ell}\right)}^{p} d y \\
& =c^{p-1} \int_{\mathbb{R}^{m}}\left\|f_{y}\right\|_{L^{p}\left(\mathbb{R}^{\ell}\right)} d y \\
& =c^{p-1} c=c^{p}=\int_{\mathbb{R}^{m}}\left\|f_{y}\right\|_{L^{p}\left(\mathbb{R}^{\ell}\right)} d y
\end{aligned}
$$

Thus,

$$
\|F(x)\|_{L^{p}\left(\mathbb{R}^{\ell}\right)} \leq \int_{\mathbb{R}^{m}}\left\|f_{y}\right\|_{L^{p}\left(\mathbb{R}^{\ell}\right)} d y
$$

and so

$$
\left\|\int_{\mathbb{R}^{m}} f(x, y) d y\right\|_{L^{p}\left(\mathbb{R}^{\ell}\right)} \leq \int_{\mathbb{R}^{m}}\left\|f_{y}\right\|_{L^{p}\left(\mathbb{R}^{\ell}\right)} d y
$$

Application. Let $f \in L^{1}\left(\mathbb{R}^{n}\right.$ and $g \in L^{p}\left(\mathbb{R}^{n}\right)$. Then $f * g \in L^{p}\left(\mathbb{R}^{n}\right)$ since

$$
\begin{aligned}
& \left(\int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} f(y) g(x-y) d y\right|^{p} d x\right)^{1 / p} \\
& \leq \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|f(y) g(x-y)|^{p} d x\right)^{1 / p} d y \\
& =\int_{\mathbb{R}^{n}}|f(y)|\left(\int_{\mathbb{R}^{n}}|g(x-y)|^{p} d x\right)^{1 / p} d y \\
& =\int_{\mathbb{R}^{n}}|f(y)|\|g\|_{p} d y \\
& =\|f\|_{1}\|g\|_{p} .
\end{aligned}
$$

Distribution functions. Suppose $f: X \rightarrow[0, \infty]$ and let $\mu\{f>t\}=$ $\mu(x \mid f(x)>t\}$.

Theorem 0.1.

$$
\int_{X} f d \mu=\int_{0}^{\infty} \mu\{f>t\} d t
$$

and

$$
\int_{X} f^{p} d \mu=p \int_{0}^{\infty} \mu\{f>t\} t^{p-1} d t
$$

More generally, if φ is differentiable, then

$$
\int_{X} \varphi \circ f d \mu=\int_{0}^{\infty} \mu\{f>t\} \varphi^{\prime}(t) d t
$$

Proof. We have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|f| d x & =\int_{\mathbb{R}^{n}}\left(\int_{0}^{|f(x)|} d t\right) d x \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}} \chi_{[0, f(x)]}(t) d t d x \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}^{n}} \chi_{[0, f(x)]}(t) d x d t
\end{aligned}
$$

Then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|f|^{p} d x & =\int_{0}^{\infty} \mu\left\{|f|^{p}>t\right\} d t \\
& =\int_{0}^{\infty} \mu\left\{|t|>t^{1 / p}\right\} d t \\
& =p \int_{0}^{\infty} \mu\{|f|>s\} s^{p-1} d s,
\end{aligned}
$$

letting $s=t^{1 / p}$, so $s^{p}=t$ and $d t=p s^{p-1} d s$.

Marcinkiewicz interpolation. Recall the maximal function

$$
M f(x)=\sup _{0<r<\infty} \frac{1}{\lambda(B(x, r))} \int_{B(x, r)}|f(y)| d y
$$

Note if $f \in L^{\infty}$, then $\|M f\|_{\infty} \leq\|f\|_{\infty}$. Thus, M maps L^{∞} into itself: $M: L^{\infty} \rightarrow L^{\infty}$.

On the other hand, by Hardy-Littlewood, if $f \in L^{1}$, then

$$
\begin{equation*}
\mu\{M f>t\} \leq \frac{3^{n}}{t}\|f\|_{1} \tag{0.1}
\end{equation*}
$$

and M maps L^{1} to weak L^{1}.
Using a method called Marcinkiewicz interpolation, we prove the following.

Theorem 0.2. Let $1<p<\infty$ and $f \in L^{p}$. Then $M f \in L^{p}$, and

$$
\begin{equation*}
\|M f\|_{p} \leq C(n, p)\|f\|_{p} \tag{0.2}
\end{equation*}
$$

where $C(n, p)$ is bounded as $p \rightarrow \infty$ and $C(n, p) \rightarrow \infty$ as $p \rightarrow 1$.
Proof. Observe that $M f=M|f|$, so assume $f \geq 0$. Choose a constant $0<c<1$ (we will choose the best c later). For $t \in(0, \infty)$, write $f=g_{t}+h_{t}$, where

$$
g_{t}(x)= \begin{cases}f(x) & f(x)>c t \\ 0 & f(x) \leq c t\end{cases}
$$

So, $0 \leq h_{t}(x) \leq c t$ for every x, and thus $h_{t} \in L^{\infty}$. We have

$$
M f \leq M g_{t}+M h_{t} \leq M g_{t}+c t
$$

from (0.2). Thus, $M f-c t \leq M g_{t}$, o if $M f(x)>t$, then $(1-c) t \leq$ $M g_{t}(x)$.

Let $E_{t}=\{f>c t\}$. Then

$$
\begin{aligned}
\lambda\{M f>t\} & \leq \lambda\left\{M g_{t}>(1-c) t\right\} \\
& \leq \frac{3^{n}}{(1-c) t}\left\|g_{t}\right\|_{1} \quad \text { from (0.1) } \\
& =\frac{3^{n}}{(1-c) t} \int_{E_{t}} f d x .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}(M f)^{p} d x & =p \int_{0}^{\infty} \lambda\{M f>t\} t^{p-1} d t \\
& \leq \frac{3^{n} p}{1-c} \int_{0}^{\infty} t^{p-2}\left(\int_{E_{t}} f d x\right) d t \\
& =\frac{3^{n} p}{1-c} \int_{\mathbb{R}^{n}}\left(f(x) \int_{0}^{f(x) / c} t^{p-2} d t\right) d x \\
& =\frac{3^{n} p}{1-c} \int_{\mathbb{R}^{n}} f(x) \frac{1}{p-1}\left(\frac{f(x)}{c}\right)^{p-1} d x \\
& =\frac{3^{n} p}{1-c} \cdot \frac{c^{1-p}}{p-1} \int_{\mathbb{R}^{n}} f(x)^{p} d x \\
& =C(n, p)\|f\|_{p}^{p} .
\end{aligned}
$$

Thus,

$$
\|M f\|_{p} \leq \underbrace{{\frac{3^{n} p c^{1-p}}{(1-c)(p-1)}}^{1 / p}}_{\rightarrow 1 \text { as } p \rightarrow \infty}\|f\|_{p}
$$

Choose $c=1 / p^{\prime}=(p-1) / p$; this gives the best constant.

