# MEASURE AND INTEGRATION: LECTURE 21 

## Approximations. Let

$$
h(t)= \begin{cases}0 & t \leq 0 \\ \exp (-1 / t) & t>0\end{cases}
$$

Then $h \in C^{\infty}$ (infinitely differentiable with continuous derivatives). Define $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $\phi\left(x_{1}, \ldots, x_{n}\right)=h\left(1-|x|^{2}\right)$. If $|x|^{2}>1$, then $1-|x|^{2}<0 \Rightarrow \phi=0$ on $B(0,1)^{c}$. Thus, $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Redefine $\phi$ so that $\int_{\mathbb{R}^{n}} \phi d z=1$.

Now define $\phi_{a}(x)=a^{-n} \phi(x / a)$. Then $\phi_{a}$ supported on a ball of radius $a$ and

$$
\int_{\mathbb{R}^{n}} \phi_{a}(x) d x=1
$$

by a linear change of variables.
Given $f$, define $f_{a}(x)=f * \phi_{a}=\int_{\mathbb{R}^{n}} f(y) \phi_{a}(x-y) d y$. Then $f_{a}(x) \in$ $C_{0}^{\infty}$ since

$$
\frac{\partial^{(k)}}{\partial x^{(k)}} f_{a}(x)=\int_{\mathbb{R}^{n}} f(y) \frac{\partial^{(k)}}{\partial x^{(k)}} \phi_{a}(x-y) d y
$$

and if $f$ has compact support, then so does $f_{a}$.
Suppose $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and define

$$
g(x)=\int_{R^{n}} f(y) \phi_{a}(x-y) d y=f * \phi_{a}
$$

Note that $\phi_{a}(x-y)$ is bounded and the integrand is integrable.
Lemma 0.1. The function $g(x)$ is continuous.
Proof. Fix $x_{0}$. Then

$$
\lim _{x \rightarrow x_{0}} g(x)=\lim _{x \rightarrow x_{0}} \int_{\mathbb{R}^{n}} f(y) \phi_{a}(x-y) d y
$$

and since $f(y) \phi_{a}(x-y) \leq C|f(y)| \in L^{1}$, we may apply LDCT so that the RHS above equals

$$
\begin{aligned}
& =\int_{\mathbb{R}^{n}} \lim _{x \rightarrow x_{0}} f(y) \phi_{a}(x-y) d y \\
& =\int_{\mathbb{R}^{n}} f(y) \phi_{a}(x-y) d y \quad \text { since } \phi_{a} \in C_{c} \\
& =g\left(x_{0}\right) .
\end{aligned}
$$

Lemma 0.2. The $k$ th partial derivatives of $g$ exist and are continuous for $k=1,2, \ldots$ In other words, $g \in C^{\infty}$.

Proof. Let $e_{k}=(0, \ldots, 0,1,0, \ldots, 0)$, the vector whose $k$ th coordinate is equal to 1 and all other coordinates are zero. We have

$$
\begin{aligned}
\frac{g\left(x+t e_{k}\right)-g(x)}{t} & =\frac{\int_{\mathbb{R}^{n}} f(y) \phi_{a}\left(x+t e_{k}-y\right) d y-\int_{\mathbb{R}^{n}} f(y) \phi_{a}(x-y) d y}{t} \\
& =\int_{\mathbb{R}^{n}} f(y)\left(\frac{\phi_{a}\left(x+t e_{k}-y\right)-\phi_{a}(x-y)}{t}\right) d y .
\end{aligned}
$$

Since

$$
\frac{\phi_{a}\left(x+t e_{k}-y\right)-\phi_{a}(x-y)}{t}=\left.\frac{\partial^{k}}{\partial x^{k}} \phi_{a}\left(x^{\prime}-y\right)\right|_{x^{\prime}=x+t^{\prime} e_{k}, 0 \leq t^{\prime} \leq t}
$$

is less than some constant $C$ in absolute value, the integrand above is dominated by $C|f| \in L^{1}$. Thus,

$$
\begin{aligned}
\frac{\partial g}{\partial x_{k}} & =\lim _{t \rightarrow 0} \frac{g\left(x+t e_{k}\right)-g(x)}{t} \\
& =\int_{\mathbb{R}^{n}} f(y) \lim _{t \rightarrow 0}\left(\frac{\phi_{a}\left(x+t e_{k}-y\right)-\phi_{a}(x-y)}{t}\right) d y \\
& =\int_{\mathbb{R}^{n}} f(y) \frac{\partial}{\partial x_{k}} \phi_{a}(x-y) d y .
\end{aligned}
$$

Thus, the partial derivatives exist, and

$$
\frac{\partial}{\partial x_{k}} \phi_{a}(x-y) \in C^{0},
$$

so by the first lemma, $\partial g / \partial x_{k}$ is also continuous. By induction, we can conclude that $g(x) \in C^{\infty}$.

Lemma 0.3. If $f \in C_{c}\left(\mathbb{R}^{n}\right)$, then $g \in C_{c}\left(\mathbb{R}^{n}\right)$.

Proof. There exists $R>0$ such that $f=0$ on $B(0, R)^{c}$. Choose $x$ so that $g(x) \neq 0$. Then there exists $y$ such that $f(y) \phi_{a}(x-y) \neq 0$. If $f(y) \neq 0$, then $y \in B(0, R)$. If $\phi_{a}(x-y) \neq 0$, then $x-y \in B(0, a)$. Thus,

$$
|x|=|x-y+y| \leq|x-y|+|y| \leq a+R,
$$

and so $g(x)=0$ if $|x| \leq R+a$. In other words, $g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.
Theorem 0.4. $C_{c}^{\infty}$ is dense in $L^{p}$.
Proof for $L^{1}$. We proved previously that $C_{c}$ is dense in $L^{1}$; we just need to prove that $C_{c}^{\infty}$ is dense in $C_{c}$. Given $f \in C_{c}$, there exists $r>0$ such that $f=0$ on $B(0, r)^{c}$. Given $\epsilon>0$, since $f \in C_{c}, f$ is uniformly continuous means that there exists $a>0$ such that $|x-y| \leq a \Rightarrow$

$$
|f(x)-f(y)| \leq \frac{\epsilon}{\lambda(B(0, r+1))}
$$

and we may make $0<a \leq 1$.
Consider $\phi_{a}$ :

$$
\int \phi_{a} d x=1 \text { and } \int \phi_{a}(x-y) d y=1
$$

Thus,

$$
\begin{aligned}
\left|f * \phi_{a}(x)-f(x)\right| & =\left|\int(f(y)-f(x)) \phi_{a}(x-y) d y\right| \\
& \leq \int|f(y)-f(x)| \phi_{a}(x-y) d y \\
& =\int_{|x-y| \leq a}|f(y)-f(x)| \phi_{a}(x-y) d y \\
& \leq \frac{\epsilon}{\lambda(b(0, r+1))} \int_{|x-y| \leq a} \phi_{a}(x-y) d y \\
& =\frac{\epsilon}{\lambda(B(0, r+1))} .
\end{aligned}
$$

So we have that

$$
\begin{aligned}
\left\|f * \phi_{a}-f\right\|_{1} & =\int_{\mathbb{R}^{n}}\left|f * \phi_{a}(x)-f(x)\right| d x \\
& =\int_{B(0, r+1)}\left|f * \phi_{a}(x)-f(x)\right| d x \\
& \leq \frac{\epsilon}{\lambda(B(0, r+1)} \lambda(B(0, r+1))=\epsilon
\end{aligned}
$$

In fact, more is true. We first need a lemma.

Lemma 0.5. If $f \in L^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\lim _{y \rightarrow 0} \int_{\mathbb{R}^{n}}|f(x+y)-f(x)| d x=0
$$

Theorem 0.6. Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$ with $1 \leq p<\infty$. Then

$$
\lim _{a \rightarrow 0}\left\|f * \phi_{a}-f\right\|_{p}=0
$$

Proof for $L^{1}$. We have

$$
\begin{aligned}
\int\left(f * \phi_{a}(x)-f(x)\right) & =\int\left(\int(f(x-y)-f(x)) \phi_{a}(y) d y\right) d x \\
& =\int\left(\int(f(x-y)-f(x)) \phi_{a}(y) d x\right) d y \\
& =\int \phi_{a}(y) \int(f(x-y)-f(x)) d x d y \\
& \leq \int_{B(0, r)} \phi_{a}(y) \cdot \epsilon+\int_{B(0, r)} 2\|f\|_{1} \phi_{a}(y) \\
& \leq \epsilon+2\|f\|_{1} \int_{B(0, r)} \phi_{a}(y) \\
& \rightarrow 0 \quad \text { for } a \text { sufficiently small. }
\end{aligned}
$$

