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MEASURE AND INTEGRATION: LECTURE 21


Approximations. Let 

h(t) =	
0 t ≤ 0; 

exp(−1/t) t > 0. 

Then h	 ∈ C∞ (infinitely differentiable with continuous derivatives). 
2Define φ : Rn R by φ(x1, . . . , xn) = h(1 − x 2). If x > 1, then 

2 
→	 | | | |

x < 0 ⇒ φ = 0 on B(0, 1)c . Thus, φ ∈ C∞(Rn). Redefine φ soc1 − |�|
that Rn φ dz = 1. 

Now define φa(x) = a−nφ(x/a). Then φa supported on a ball of 
radius a and 

φa(x)dx = 1 
Rn 

by a linear change of variables. 
Given f , define fa(x) = f ∗ φa = f(y)φa(x − y) dy. Then fa(x) ∈Rn 

C0
∞ since 

∂(k) ∂(k) 

∂x(k) 
fa(x) = f(y) 

∂x(k) 
φa(x − y) dy, 

Rn 

and if f has compact support, then so does fa. 
Suppose f ∈ L1(Rn) and define 

g(x) = f(y)φa(x − y) dy = f ∗ φa. 
Rn 

Note that φa(x − y) is bounded and the integrand is integrable. 

Lemma 0.1. The function g(x) is continuous. 

Proof. Fix x0. Then 

lim g(x) = lim f(y)φa(x − y) dy, 
x x Rn→x0 →x0 
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2 MEASURE AND INTEGRATION: LECTURE 21 

and since f(y)φa(x − y) ≤ C f(y) ∈ L1, we may apply LDCT so that | |
the RHS above equals 

= lim f(y)φa(x − y) dy 
x x0Rn →

= f(y)φa(x − y) dy since φa ∈ Cc 
Rn 

= g(x0). 

Lemma 0.2. The kth partial derivatives of g exist and are continuous 
for k = 1, 2, . . .. In other words, g ∈ C∞. 

Proof. Let ek = (0, . . . , 0, 1, 0, . . . , 0), the vector whose kth coordinate 
is equal to 1 and all other coordinates are zero. We have 

g(x + tek) − g(x) f(y)φa(x + tek − y) dy − f(y)φa(x − y) dyRn Rn 
= 

t t 
φa(x + tek − y) − φa(x − y) 

= f(y) dy. 
tRn 

Since 

φa(x + tek − y) − φa(x − y) ∂k 

= φa(x
� − y)

t ∂xk 
x�=x+t�ek , 0≤t�≤t 

is less than some constant C in absolute value, the integrand above is 
dominated by C |f | ∈ L1 . Thus, 

∂g g(x + tek ) − g(x)
= lim 

∂xk t 

= f(y) lim 
φa(x + tek − y) − φa(x − y) 

dy 
Rn t 0 t 

t 0→

→

∂ 
= f(y) φa(x − y) dy. 

Rn ∂xk 

Thus, the partial derivatives exist, and 

∂ 
φa(x − y) ∈ C0 ,

∂xk 

so by the first lemma, ∂g/∂xk is also continuous. By induction, we can 
conclude that g(x) ∈ C∞. � 

Lemma 0.3. If f ∈ Cc(Rn), then g ∈ Cc(Rn). 
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3 MEASURE AND INTEGRATION: LECTURE 21 

Proof. There exists R > 0 such that f = 0 on B(0, R)c . Choose x so 
that g(x) = 0. Then there exists y such that f(y)φa(x − y) = 0. If 
f(y) = 0, then y ∈ B(0, R). If φa(x − y) = 0, then x − y ∈ B(0, a). 
Thus, 

x = x− y + y x− y + y ≤ a + R, | | | | ≤ | | | |
and so g(x) = 0 if x ≤ R + a. In other words, g ∈ C∞(Rn). �c| | 
Theorem 0.4. Cc

∞ is dense in Lp. 

Proof for L1 . We proved previously that Cc is dense in L1; we just need 
to prove that C∞ is dense in Cc. Given f ∈ Cc, there exists r > 0 such c 
that f = 0 on B(0, r)c . Given � > 0, since f ∈ Cc, f is uniformly 
continuous means that there exists a > 0 such that x− y| | ≤ a ⇒ 

f(x) − f(y) ,| | ≤ 
λ(B(0, r + 1)) 

and we may make 0 < a ≤ 1. 
Consider φa: 

φa dx = 1 and φa(x− y)dy = 1. 

Thus, 

f ∗ φa(x) − f(x) (f(y) − f(x))φa(x− y) dy| =| 

f(y) − f(x) φa(x− y) dy|≤ |

f(y) − f(x) φa(x− y) dy|= 
|x−y|≤a 

|


φa(x− y) dy≤ 
λ(b(0, r + 1)) |x−y|≤a 

= . 
λ(B(0, r + 1)) 

So we have that 

=�f ∗ φa − f�1 
Rn 

dxf ∗ φa(x) − f(x)| | 

= f ∗ φa(x) − f(x) dx| |
B(0,r+1) 

λ(B(0, r + 1)) = �.≤ 
λ(B(0, r + 1) 

In fact, more is true. We first need a lemma. 
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4 MEASURE AND INTEGRATION: LECTURE 21 

Lemma 0.5. If f ∈ L1(Rn), then 

lim f (x + y) − f (x) dx = 0. 
y→0 Rn 

| | 

Theorem 0.6. Let f ∈ Lp(Rn) with 1 ≤ p < ∞. Then 

lim 
0 
�f ∗ φa − f �p = 0. 

a→

Proof for L1 . We have � � �� � 

(f ∗ φa(x) − f (x)) = (f (x − y) − f (x))φa(y) dy dx 

= (f (x − y) − f (x))φa(y) dx dy 

= φa(y) (f (x − y) − f (x)) dx dy 

φa(y) · � + 2 �f �1 φa(y)≤ 
B(0,r) � B(0,r) 

≤ � + 2 �f �1 φa(y) 
B(0,r) 

→ 0 for a sufficiently small. 


