MEASURE AND INTEGRATION: LECTURE 21

Approximations. Let

$$h(t) = \begin{cases} 0 & t \le 0;\\ \exp(-1/t) & t > 0. \end{cases}$$

Then $h \in C^{\infty}$ (infinitely differentiable with continuous derivatives). Define $\phi \colon \mathbb{R}^n \to \mathbb{R}$ by $\phi(x_1, \ldots, x_n) = h(1 - |x|^2)$. If $|x|^2 > 1$, then $1 - |x|^2 < 0 \Rightarrow \phi = 0$ on $B(0, 1)^c$. Thus, $\phi \in C_c^{\infty}(\mathbb{R}^n)$. Redefine ϕ so that $\int_{\mathbb{R}^n} \phi \, dz = 1$.

Now define $\phi_a(x) = a^{-n}\phi(x/a)$. Then ϕ_a supported on a ball of radius a and

$$\int_{\mathbb{R}^n} \phi_a(x) dx = 1$$

by a linear change of variables.

Given f, define $f_a(x) = f * \phi_a = \int_{\mathbb{R}^n} f(y)\phi_a(x-y) \, dy$. Then $f_a(x) \in C_0^{\infty}$ since

$$\frac{\partial^{(k)}}{\partial x^{(k)}} f_a(x) = \int_{\mathbb{R}^n} f(y) \frac{\partial^{(k)}}{\partial x^{(k)}} \phi_a(x-y) \, dy,$$

and if f has compact support, then so does f_a .

Suppose $f \in L^1(\mathbb{R}^n)$ and define

$$g(x) = \int_{\mathbb{R}^n} f(y)\phi_a(x-y) \, dy = f * \phi_a.$$

Note that $\phi_a(x-y)$ is bounded and the integrand is integrable.

Lemma 0.1. The function g(x) is continuous.

Proof. Fix x_0 . Then

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} \int_{\mathbb{R}^n} f(y) \phi_a(x-y) \, dy,$$

Date: November 18, 2003.

and since $f(y)\phi_a(x-y) \leq C |f(y)| \in L^1$, we may apply LDCT so that the RHS above equals

$$= \int_{\mathbb{R}^n} \lim_{x \to x_0} f(y)\phi_a(x-y) \, dy$$
$$= \int_{\mathbb{R}^n} f(y)\phi_a(x-y) \, dy \quad \text{since } \phi_a \in C_c$$
$$= g(x_0).$$

Lemma 0.2. The kth partial derivatives of g exist and are continuous for k = 1, 2, ... In other words, $g \in C^{\infty}$.

Proof. Let $e_k = (0, \ldots, 0, 1, 0, \ldots, 0)$, the vector whose kth coordinate is equal to 1 and all other coordinates are zero. We have

$$\frac{g(x+te_k)-g(x)}{t} = \frac{\int_{\mathbb{R}^n} f(y)\phi_a(x+te_k-y) \, dy - \int_{\mathbb{R}^n} f(y)\phi_a(x-y) \, dy}{t}$$
$$= \int_{\mathbb{R}^n} f(y) \left(\frac{\phi_a(x+te_k-y)-\phi_a(x-y)}{t}\right) dy.$$

Since

$$\frac{\phi_a(x+te_k-y)-\phi_a(x-y)}{t} = \left.\frac{\partial^k}{\partial x^k}\phi_a(x'-y)\right|_{x'=x+t'e_k, 0\le t'\le t}$$

is less than some constant C in absolute value, the integrand above is dominated by $C |f| \in L^1$. Thus,

$$\begin{aligned} \frac{\partial g}{\partial x_k} &= \lim_{t \to 0} \frac{g(x + te_k) - g(x)}{t} \\ &= \int_{\mathbb{R}^n} f(y) \lim_{t \to 0} \left(\frac{\phi_a(x + te_k - y) - \phi_a(x - y)}{t} \right) dy \\ &= \int_{\mathbb{R}^n} f(y) \frac{\partial}{\partial x_k} \phi_a(x - y) \, dy. \end{aligned}$$

Thus, the partial derivatives exist, and

$$\frac{\partial}{\partial x_k}\phi_a(x-y)\in C^0,$$

so by the first lemma, $\partial g/\partial x_k$ is also continuous. By induction, we can conclude that $g(x) \in C^{\infty}$.

Lemma 0.3. If $f \in C_c(\mathbb{R}^n)$, then $g \in C_c(\mathbb{R}^n)$.

Proof. There exists R > 0 such that f = 0 on $B(0, R)^c$. Choose x so that $g(x) \neq 0$. Then there exists y such that $f(y)\phi_a(x-y) \neq 0$. If $f(y) \neq 0$, then $y \in B(0, R)$. If $\phi_a(x-y) \neq 0$, then $x-y \in B(0, a)$. Thus,

$$|x| = |x - y + y| \le |x - y| + |y| \le a + R,$$

w) = 0 if $|x| \le R + a$. In other words, $a \in C^{\infty}(\mathbb{D}^n)$

and so g(x) = 0 if $|x| \le R + a$. In other words, $g \in C_c^{\infty}(\mathbb{R}^n)$. \Box **Theorem 0.4.** C_c^{∞} is dense in L^p .

Proof for L^1 . We proved previously that C_c is dense in L^1 ; we just need to prove that C_c^{∞} is dense in C_c . Given $f \in C_c$, there exists r > 0 such that f = 0 on $B(0, r)^c$. Given $\epsilon > 0$, since $f \in C_c$, f is uniformly continuous means that there exists a > 0 such that $|x - y| \leq a \Rightarrow$

$$|f(x) - f(y)| \le \frac{\epsilon}{\lambda(B(0, r+1))}$$

and we may make $0 < a \leq 1$.

Consider ϕ_a :

$$\int \phi_a \, dx = 1$$
 and $\int \phi_a(x-y)dy = 1.$

Thus,

$$\begin{aligned} |f * \phi_a(x) - f(x)| &= \left| \int (f(y) - f(x))\phi_a(x - y) \, dy \right| \\ &\leq \int |f(y) - f(x)| \, \phi_a(x - y) \, dy \\ &= \int_{|x-y| \le a} |f(y) - f(x)| \, \phi_a(x - y) \, dy \\ &\leq \frac{\epsilon}{\lambda(b(0, r+1))} \int_{|x-y| \le a} \phi_a(x - y) \, dy \\ &= \frac{\epsilon}{\lambda(B(0, r+1))}. \end{aligned}$$

So we have that

$$\|f * \phi_a - f\|_1 = \int_{\mathbb{R}^n} |f * \phi_a(x) - f(x)| dx$$
$$= \int_{B(0,r+1)} |f * \phi_a(x) - f(x)| dx$$
$$\leq \frac{\epsilon}{\lambda(B(0,r+1))} \lambda(B(0,r+1)) = \epsilon.$$

In fact, more is true. We first need a lemma.

Lemma 0.5. If $f \in L^1(\mathbb{R}^n)$, then

$$\lim_{y \to 0} \int_{\mathbb{R}^n} |f(x+y) - f(x)| \, dx = 0.$$

Theorem 0.6. Let $f \in L^p(\mathbb{R}^n)$ with $1 \le p < \infty$. Then $\lim_{a \to 0} \|f * \phi_a - f\|_p = 0.$

Proof for L^1 . We have

$$\begin{split} \int (f * \phi_a(x) - f(x)) &= \int \left(\int (f(x - y) - f(x))\phi_a(y) \, dy \right) \, dx \\ &= \int \left(\int (f(x - y) - f(x))\phi_a(y) \, dx \right) \, dy \\ &= \int \phi_a(y) \int (f(x - y) - f(x)) \, dx \, dy \\ &\leq \int_{B(0,r)} \phi_a(y) \cdot \epsilon + \int_{B(0,r)} 2 \, \|f\|_1 \, \phi_a(y) \\ &\leq \epsilon + 2 \, \|f\|_1 \int_{B(0,r)} \phi_a(y) \\ &\to 0 \quad \text{for } a \text{ sufficiently small.} \end{split}$$

-		_	
_		_	