MEASURE AND INTEGRATION: LECTURE 20

Convolutions

Definition. If f and g are measurable functions on \mathbb{R}^{n}, then the convolution of f and g, denoted $f * g$, is defined formally as

$$
(f * g)(x)=\int_{\mathbb{R}^{n}} f(y) g(x-y) d y
$$

The operation is commutative and associative:

$$
(f * g)(x)=(g * f)(x) \quad \text { and } \quad(f * g) * h=f *(g * h)
$$

Inequalities. Let f be a Lebesgue measurable function on \mathbb{R}^{n}. Then the function $f(x)$ considered as a function of (x, x) in $\mathbb{R}^{2 n}$ is Lebesgue measurable since $\mathcal{L}_{n} \times \mathcal{L}_{n} \subset \mathcal{L}_{2 n}$. The linear transformation given by $(x, y) \mapsto(x-y, y)$ is invertible, and so $f(x-y)$ is a Lebesgue measurable function of $(x, y) \in \mathbb{R}^{2 n}$. Thus, we see that $f(y) g(x-y)$ is measurable on $\mathbb{R}^{2 n}$.

The next theorem asserts that if f and g are in $L^{1}\left(\mathbb{R}^{n}\right)$, then $f * g$ exists a.e. and $f * g \in L^{1}\left(\mathbb{R}^{n}\right)$. Since the product of two integrable functions need not be integrable, it is not obvious that $f * g$ exists a.e.
Theorem 0.1. Assume $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$. Then for a.e. $x \in \mathbb{R}^{n}$, the convolution $(f * g)(x)$ exists, $f * g \in L^{1}\left(\mathbb{R}^{n}\right)$, and

$$
\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1} .
$$

Proof. Assume that f and g are non-negative. Then $f(y) g(x-y)$ is a non-negative measurable function, and Fubini I implies

$$
\int d x \int f(y) g(x-y) d y=\int d y \int f(y) g(x-y) d x
$$

The LHS equals $\int(f * g)(x) d x$, and the RHS is

$$
\int f(y) d y \int g(x-y) d x=\int f(y) d y \cdot \int g(x) d x .
$$

Thus $\|f * g\|_{1}=\|f\|_{1}\|g\|_{1}$. When f and g are not necessarily nonnegative, we see that $|f| *|g|$ exists a.e. $\Rightarrow|f(y) g(x-y)|$ integable $\Rightarrow f(y) g(x-y)$ integrable $\Rightarrow f * g$ exists a.e. Since $|f * g| \leq|f| *|g|$, the theorem follows.

[^0]Young's theorem. Our next theorem generalizes the previous one.
Theorem 0.2. Let $p, q, r \in[1, \infty]$ such that

$$
\frac{1}{r}=\frac{1}{p}+\frac{1}{q}-1
$$

If $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$, then $f * g$ exists a.e. and $f * g \in L^{r}\left(\mathbb{R}^{n}\right)$. Moreover,

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q} .
$$

Proof. Without loss of generality, let $\|f\|_{p}=\|g\|_{p}=1$. The general case follows from the non-negative case, so assume $f, g \geq 0$. Applying Hölder's inequality,

$$
\begin{aligned}
(f * g)(x)= & \int\left(f(y)^{p / r} g(x-y)^{q / r}\right) f(y)^{1-p / r} g(x-y)^{1-q / r} d y \\
\leq & \left(\int f(y)^{p} g(x-y)^{q} d y\right)^{1 / r}\left(\int f(y)^{(1-p / r) q^{\prime}} d y\right)^{1 / q^{\prime}} \\
& \times\left(\int g(x-y)^{(1-q / r) p^{\prime}} d y\right)^{1 / p^{\prime}}
\end{aligned}
$$

We have used the fact that

$$
\frac{1}{r}+\frac{1}{q^{\prime}}+\frac{1}{p^{\prime}}=\frac{1}{r}+\left(1-\frac{1}{q}\right)+\left(1-\frac{1}{p}\right)=1
$$

Since

$$
\begin{aligned}
& \left(1-\frac{p}{r}\right) q^{\prime}=p\left(\frac{1}{p}-\frac{1}{r}\right) q^{\prime}=p\left(1-\frac{1}{q}\right)=p \\
& \left(1-\frac{q}{r}\right) p^{\prime}=q\left(\frac{1}{q}-\frac{1}{r}\right) p^{\prime}=q\left(1-\frac{1}{p}\right) p^{\prime}=q
\end{aligned}
$$

we have

$$
(f * g)(x) \leq\left(\int f(y)^{p} g(x-y)^{q} d y\right)^{1 / r} \cdot 1 \cdot 1
$$

i.e.,

$$
(f * g)^{r}(x) \leq \int f(y)^{p} g(x-y)^{q} d y
$$

Thus, $(f * g)^{r} \leq f^{p} * g^{q}$, and so

$$
\begin{aligned}
\int(f * g) d x & \leq\left\|f^{p} * g^{q}\right\|_{1} \\
& =\left\|f^{p}\right\|_{1}\left\|g^{q}\right\|_{1} \\
& =\|f\|_{p}^{p}\|g\|_{q}^{q} \\
& =1 .
\end{aligned}
$$

The proof ignores the case in which some of the exponents equal ∞. But, if $p=\infty$, then $r=\infty$ and $q=1$, and the result follows since $|f * g| \leq\|f\|_{\infty}\|g\|_{1}$. If $r=\infty$, then $q=p^{\prime}$, and the result follows from Hölder's inequality. However, more is true when $r=\infty$.
Theorem 0.3. Let $1 \leq p \leq \infty$ and $f \in L^{p}\left(\mathbb{R}^{n}\right)$. Then the integral defining $(f * g)(x)$ exists for all $x \in \mathbb{R}^{n}, f * g$ is bounded and uniformly continuous, and if $1<p<\infty$, then $f * g \in C_{0}$ (i.e., $\lim _{|x| \rightarrow \infty}(f * g)(x)=$ $0)$.

Proof. Either p or p^{\prime} must be finite. Suppose $p^{\prime}<\infty$. The corollary to C_{c} dense in L^{p} implies that for all $\epsilon>0$ there exists $\delta>0$ such that if $|y|<\delta$, then $\left\|\tau_{y} g-g\right\|_{p^{\prime}} \leq \epsilon$, where τ is translation by y. Thus, $\left|x-x^{\prime}\right| \leq \delta$, then

$$
\left\|\tau_{x} g-\tau_{x^{\prime}} g\right\|_{p^{\prime}}=\left\|\tau_{x-x^{\prime}} g-g\right\|_{p^{\prime}} \leq \epsilon .
$$

By Hölder's inequality,

$$
\begin{aligned}
\left|(f * g)(x)-(f * g)\left(x^{\prime}\right)\right| & \leq \int|f(y)| \mid g(x-y)-g\left(x^{\prime}-y \mid d y\right. \\
& =\int|f(-y)|\left|g(x+y)-g\left(x^{\prime}+y\right)\right| d y \\
& \leq\|f\|_{p}\left\|\tau_{x} g-\tau_{x^{\prime}} g\right\|_{p^{\prime}} \\
& \leq\|f\|_{p} \epsilon .
\end{aligned}
$$

This proves that $f * g$ is uniformly continuous.
Now let $1<p<\infty$. Since C_{c} is dense in L^{p}, there exist sequences $f_{k}, g_{k} \in C_{c}\left(\mathbb{R}^{n}\right)$ such that $f_{k} \rightarrow f$ in L^{p} and $g_{k} \rightarrow g$ in $L^{p^{\prime}}$. Thus, $f_{k} * g_{k} \in C_{c}\left(\mathbb{R}^{n}\right)$. Estimating,

$$
\begin{aligned}
\left\|f_{k} * g_{k}-f * g\right\|_{\infty} & \leq\left\|f_{k} *\left(g_{k}-g\right)\right\|_{\infty}+\left\|\left(f_{k}-f\right) * g\right\|_{\infty} \\
& \leq\left\|f_{k}\right\|_{p}\left\|g_{k}-g\right\|_{p^{\prime}}+\left\|f_{k}-f\right\|_{p}\|g\|_{p 6 \prime} \\
& \rightarrow 0 \quad \text { as } k \rightarrow \infty .
\end{aligned}
$$

Thus, $f_{k} * g_{k}$ converges uniformly to $f * g$, and so $f * g \rightarrow 0$ as $|x| \rightarrow \infty$.

[^0]: Date: November 13, 2003.

