MEASURE AND INTEGRATION: LECTURE 20

CONVOLUTIONS

Definition. If f and g are measurable functions on \mathbb{R}^n , then the *convolution* of f and g, denoted f * g, is defined formally as

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y) \, dy.$$

The operation is commutative and associative:

$$(f * g)(x) = (g * f)(x)$$
 and $(f * g) * h = f * (g * h).$

Inequalities. Let f be a Lebesgue measurable function on \mathbb{R}^n . Then the function f(x) considered as a function of (x, x) in \mathbb{R}^{2n} is Lebesgue measurable since $\mathcal{L}_n \times \mathcal{L}_n \subset \mathcal{L}_{2n}$. The linear transformation given by $(x, y) \mapsto (x-y, y)$ is invertible, and so f(x-y) is a Lebesgue measurable function of $(x, y) \in \mathbb{R}^{2n}$. Thus, we see that f(y)g(x-y) is measurable on \mathbb{R}^{2n} .

The next theorem asserts that if f and g are in $L^1(\mathbb{R}^n)$, then f * g exists a.e. and $f * g \in L^1(\mathbb{R}^n)$. Since the product of two integrable functions need not be integrable, it is not obvious that f * g exists a.e.

Theorem 0.1. Assume $f, g \in L^1(\mathbb{R}^n)$. Then for a.e. $x \in \mathbb{R}^n$, the convolution (f * g)(x) exists, $f * g \in L^1(\mathbb{R}^n)$, and

$$\|f * g\|_1 \le \|f\|_1 \|g\|_1.$$

Proof. Assume that f and g are non-negative. Then f(y)g(x-y) is a non-negative measurable function, and Fubini I implies

$$\int dx \int f(y)g(x-y) \, dy = \int dy \int f(y)g(x-y) \, dx.$$

The LHS equals $\int (f * g)(x) dx$, and the RHS is

$$\int f(y) \, dy \int g(x-y) \, dx = \int f(y) \, dy \cdot \int g(x) \, dx.$$

Thus $||f * g||_1 = ||f||_1 ||g||_1$. When f and g are not necessarily nonnegative, we see that |f| * |g| exists a.e. $\Rightarrow |f(y)g(x-y)|$ integable $\Rightarrow f(y)g(x-y)$ integrable $\Rightarrow f * g$ exists a.e. Since $|f * g| \le |f| * |g|$, the theorem follows.

Date: November 13, 2003.

Young's theorem. Our next theorem generalizes the previous one.

Theorem 0.2. Let $p, q, r \in [1, \infty]$ such that

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$$

If $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, then f * g exists a.e. and $f * g \in L^r(\mathbb{R}^n)$. Moreover,

$$\|f * g\|_r \le \|f\|_p \|g\|_q$$

Proof. Without loss of generality, let $||f||_p = ||g||_p = 1$. The general case follows from the non-negative case, so assume $f, g \ge 0$. Applying Hölder's inequality,

$$(f * g)(x) = \int \left(f(y)^{p/r} g(x - y)^{q/r} \right) f(y)^{1 - p/r} g(x - y)^{1 - q/r} dy$$

$$\leq \left(\int f(y)^p g(x - y)^q dy \right)^{1/r} \left(\int f(y)^{(1 - p/r)q'} dy \right)^{1/q'}$$

$$\times \left(\int g(x - y)^{(1 - q/r)p'} dy \right)^{1/p'}.$$

We have used the fact that

$$\frac{1}{r} + \frac{1}{q'} + \frac{1}{p'} = \frac{1}{r} + \left(1 - \frac{1}{q}\right) + \left(1 - \frac{1}{p}\right) = 1.$$

Since

$$\left(1-\frac{p}{r}\right)q' = p\left(\frac{1}{p}-\frac{1}{r}\right)q' = p\left(1-\frac{1}{q}\right) = p,$$

$$\left(1-\frac{q}{r}\right)p' = q\left(\frac{1}{q}-\frac{1}{r}\right)p' = q\left(1-\frac{1}{p}\right)p' = q,$$

we have

$$(f*g)(x) \le \left(\int f(y)^p g(x-y)^q \ dy\right)^{1/r} \cdot 1 \cdot 1,$$

i.e.,

$$(f*g)^r(x) \le \int f(y)^p g(x-y)^q \, dy.$$

Thus, $(f * g)^r \leq f^p * g^q$, and so

$$\int (f * g) \, dx \leq \|f^p * g^q\|_1 = \|f^p\|_1 \|g^q\|_1 = \|f\|_p^p \|g\|_q^q = 1.$$

The proof ignores the case in which some of the exponents equal ∞ . But, if $p = \infty$, then $r = \infty$ and q = 1, and the result follows since $|f * g| \leq ||f||_{\infty} ||g||_1$. If $r = \infty$, then q = p', and the result follows from Hölder's inequality. However, more is true when $r = \infty$.

Theorem 0.3. Let $1 \leq p \leq \infty$ and $f \in L^p(\mathbb{R}^n)$. Then the integral defining (f * g)(x) exists for all $x \in \mathbb{R}^n$, f * g is bounded and uniformly continuous, and if $1 , then <math>f * g \in C_0$ (i.e., $\lim_{|x|\to\infty} (f * g)(x) = 0$).

Proof. Either p or p' must be finite. Suppose $p' < \infty$. The corollary to C_c dense in L^p implies that for all $\epsilon > 0$ there exists $\delta > 0$ such that if $|y| < \delta$, then $\|\tau_y g - g\|_{p'} \le \epsilon$, where τ is translation by y. Thus, $|x - x'| \le \delta$, then

$$\|\tau_x g - \tau_{x'} g\|_{p'} = \|\tau_{x-x'} g - g\|_{p'} \le \epsilon.$$

By Hölder's inequality,

$$\begin{aligned} |(f * g)(x) - (f * g)(x')| &\leq \int |f(y)| |g(x - y) - g(x' - y)| \, dy \\ &= \int |f(-y)| |g(x + y) - g(x' + y)| \, dy \\ &\leq \|f\|_p \|\tau_x g - \tau_{x'} g\|_{p'} \\ &\leq \|f\|_n \epsilon. \end{aligned}$$

This proves that f * g is uniformly continuous.

Now let $1 . Since <math>C_c$ is dense in L^p , there exist sequences $f_k, g_k \in C_c(\mathbb{R}^n)$ such that $f_k \to f$ in L^p and $g_k \to g$ in $L^{p'}$. Thus, $f_k * g_k \in C_c(\mathbb{R}^n)$. Estimating,

$$\|f_k * g_k - f * g\|_{\infty} \leq \|f_k * (g_k - g)\|_{\infty} + \|(f_k - f) * g\|_{\infty}$$

$$\leq \|f_k\|_p \|g_k - g\|_{p'} + \|f_k - f\|_p \|g\|_{p6'}$$

$$\to 0 \quad \text{as } k \to \infty.$$

Thus, $f_k * g_k$ converges uniformly to f * g, and so $f * g \to 0$ as $|x| \to \infty$.