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MEASURE AND INTEGRATION: LECTURE 20 

Convolutions 

Definition. If f and g are measurable functions on Rn, then the con
volution of f and g, denoted f ∗ g, is defined formally as 

(f ∗ g)(x) = f (y)g(x − y) dy. 
Rn 

The operation is commutative and associative: 

(f ∗ g)(x) = (g ∗ f )(x) and (f ∗ g) ∗ h = f ∗ (g ∗ h). 

Inequalities. Let f be a Lebesgue measurable function on Rn . Then 
the function f (x) considered as a function of (x, x) in R2n is Lebesgue 
measurable since L n 2n. The linear transformation given by n × L ⊂ L
(x, y) �→ (x−y, y) is invertible, and so f (x−y) is a Lebesgue measurable 
function of (x, y) ∈ R2n . Thus, we see that f (y)g(x − y) is measurable 
on R2n . 

The next theorem asserts that if f and g are in L1(Rn), then f ∗ g 
exists a.e. and f ∗ g ∈ L1(Rn). Since the product of two integrable 
functions need not be integrable, it is not obvious that f ∗ g exists a.e. 

Theorem 0.1. Assume f, g ∈ L1(Rn). Then for a.e. x ∈ Rn , the 
convolution (f ∗ g)(x) exists, f ∗ g ∈ L1(Rn), and 

1 .�f ∗ g�1 ≤ �f �1 �g�

Proof. Assume that f and g are nonnegative. Then f (y)g(x − y) is a 
nonnegative measurable function, and Fubini I implies 

dx f (y)g(x − y) dy = dy f (y)g(x − y) dx. 

The LHS equals (f ∗ g)(x) dx, and the RHS is 

f (y) dy g(x − y) dx = f (y) dy · g(x) dx. 

Thus �f ∗ g�1 = �f �1 �g�1. When f and g are not necessarily non
negative, we see that |f | ∗ |g| exists a.e. f (y)g(x − y) integable ⇒ | | 
⇒ f (y)g(x − y) integrable ⇒ f 
the theorem follows. 

∗ g exists a.e. Since |f ∗ g| ≤ |f | ∗ |g|, 
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Young’s theorem. Our next theorem generalizes the previous one. 

Theorem 0.2. Let p, q, r ∈ [1, ∞] such that 

1 1 1 
= + 

q 
− 1. 

r p 

If f ∈ Lp(Rn) and g ∈ Lq (Rn), then f ∗g exists a.e. and f ∗g ∈ Lr (Rn). 
Moreover, 

.�f ∗ g�r p �g�q≤ �f �

Proof. Without loss of generality, let �f � = = 1. The general p �g�p 
case follows from the nonnegative case, so assume f, g ≥ 0. Applying 
Hölder’s inequality, 

f (y)p/r g(x − y)q/r f (y)1−p/r g(x − y)1−q/r dy(f ∗ g)(x) = �� �1/r �� �1/q� 

≤ f (y)(1−p/r)q�
f (y)pg(x − y)q dy dy �� �1/p� 

× g(x − y)(1−q/r)p� 
dy . 

We have used the fact that 

1 1 1 1 1 1 
r 

+ 
q� 

+ 
p� 

= 
r 

+ 1 −
q 

+ = 1.1 −
p 

Since � � � � � � 
p 1 1 1 

q� = p 1 −
q 

= p,1 −
r

q� = p
p 
−

r � � � � � � 
q 1 1 1 

p� = q
q 
−

r
p� = q p� = q, 1 −

r 
1 −

p 

we have �� �1/r 

(f ∗ g)(x) ≤ f (y)pg(x − y)q dy 1,1 ··

i.e., 

(f ∗ g)r (x) ≤ f (y)pg(x − y)q dy. 
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Thus, (f ∗ g)r ≤ fp ∗ gq , and so 

q 
1(f ∗ g) dx ≤ �fp ∗ g �

1 �g
q= �fp

1 
p q= �f�p �g�q 

= 1. 

The proof ignores the case in which some of the exponents equal ∞. 
But, if p = ∞, then r = ∞ and q = 1, and the result follows since 

1. If r = ∞, then q = p�, and the result follows from f ∗ g| ≤ �f�∞ �g�|
older’s inequality. However, more is true when r = .H¨ ∞

Theorem 0.3. Let 1 ≤ p ≤ ∞ and f ∈ Lp(Rn). Then the integral 
defining (f ∗ g)(x) exists for all x ∈ Rn , f ∗ g is bounded and uniformly 
continuous, and if 1 < p < ∞, then f∗g ∈ C0 (i.e., lim ) = |x|→∞(f∗g)(x
0). 

Proof. Either p or p� must be finite. Suppose p� < ∞. The corollary 
pto Cc dense in L implies that for all � > 0 there exists δ > 0 such 

that if y < δ, then �τ ≤ �, where τ is translation by y. Thus, y g − g�p| |
x− x� ≤ δ, then | |

�τxg − τx� g�p� = �τx−x� g − g�p� ≤ �. 

By Hölder’s inequality, 

(f ∗ g)(x) − (f ∗ g)(x�) f(y)| |g(x− y) − g(x� dy| | ≤ | − y| 

= f(−y) g(x + y) − g(x� + y) dy| | | | 

p �τxg − τx g�p�≤ �f�

p≤ �f�
This proves that f ∗ g is uniformly continuous. 

Now let 1 < p < ∞. Since Cc is dense in Lp, there exist sequences 
pfk , gk ∈ Cc(Rn) such that fk f in L and gk → g in Lp� 

. Thus, 
fk ∗ gk ∈ Cc(Rn). Estimating, 

→ 

�fk ∗ g + �(fk − f) ∗ g�∞k − f ∗ g�∞ ≤ �fk ∗ (gk − g)�∞ 

≤ �fk�p �gk − g�p� + �fk − f�p �g�p6� 

→ 0 as k →∞. 

Thus, fk ∗ gk converges uniformly to f ∗ g, and so f ∗ g → 0 as 
|x| → ∞. � 


