MEASURE AND INTEGRATION: LECTURE 19

Product spaces in \mathbb{R}^{n}.
Proposition 0.1. Let $\mathbb{R}^{n}=\mathbb{R}^{\ell} \times \mathbb{R}^{m}$. Let $X \subset \mathbb{R}^{\ell}$ be \mathcal{L}^{ℓ}-measurable and $Y \subset \mathbb{R}^{m}$ be \mathcal{L}^{m}-measurable. Then $X \times Y \subset \mathbb{R}^{n}$ is \mathcal{L}^{n}-measurable, and $\lambda(X \times Y)=\lambda(X) \lambda(Y)$.

Proof. If $X \times Y \in \mathcal{L}^{n}$, then by Fubini I,

$$
\begin{aligned}
\lambda(X \times Y) & =\int_{\mathbb{R}^{n}} \chi_{(X \times Y)} d z=\int_{\mathbb{R}^{n}} \chi_{X} \chi_{Y} d z \\
& =\int_{\mathbb{R}^{m}}\left(\int_{\mathbb{R}^{e}} \chi_{X} \chi_{Y} d x\right) d y=\lambda(X) \lambda(Y) .
\end{aligned}
$$

Just NTS $X \times Y \in \mathcal{L}^{n}$.
We may assume X and Y have finite measure. Let $X=\cup_{k=1}^{\infty} X_{k}$ and $Y=\cup_{k=1}^{\infty} Y_{k}$, where $X_{k}=X \cap B(0, k)$ and $Y_{k}=Y \cap B(0, k)$. Then

$$
X \times Y=\bigcup_{j, k}^{\infty} X_{k} \times Y_{k}
$$

So if $X_{k} \times Y_{k} \in \mathcal{L}^{n}$, since L^{n} is a σ-algebra, then $X \times Y \in \mathcal{L}^{n}$.
Now, given $\epsilon>0$, there exists $K_{1} \subset X \subset G_{1}$ and $K_{2} \subset Y \subset G_{2}$, with $K_{1} \subset \mathbb{R}^{\ell}$ and $K_{2} \subset \mathbb{R}^{m}$ compact, $G_{1} \subset \mathbb{R}^{\ell}$ and $G_{2} \subset \mathbb{R}^{m}$ open, such that $\lambda^{\ell}\left(G_{1} \backslash K_{1}\right)<\epsilon$ and $\lambda^{m}\left(G_{2} \backslash K_{2}\right)<\epsilon$. We have $K_{1} \times K_{2} \subset \mathbb{R}^{n}$ is compact, $G_{1} \times G_{2} \subset \mathbb{R}^{n}$ is open, and $K_{1} \times K_{2} \subset X \times Y \subset G_{1} \times G_{2}$.

Now

$$
\begin{aligned}
G_{1} \times G_{2} \backslash K_{1} \times K_{2} & =\left(\left(G_{1} \backslash K_{1}\right) \times G_{2}\right) \cup\left(K_{1} \times\left(G_{2} \backslash K_{2}\right)\right) \\
& \subset\left(\left(G_{1} \backslash K_{1}\right) \times G_{2}\right) \cup\left(G_{1} \times\left(G_{2} \backslash K_{2}\right)\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\lambda\left(G_{1} \times G_{2} \backslash K_{1} \times K_{2}\right) & =\lambda\left(G_{1} \backslash K_{1}\right) \lambda\left(G_{2}\right)+\lambda\left(G_{1}\right) \lambda\left(G_{2} \backslash K_{2}\right) \\
& \leq \epsilon \lambda\left(G_{2}\right)+\epsilon \lambda\left(G_{1}\right) \\
& <\epsilon\left(\lambda\left(K_{2}\right)+\epsilon\right)+\epsilon\left(\lambda\left(K_{1}\right)+\epsilon\right) \\
& \leq \epsilon(\lambda(X)+\lambda(Y)+2 \epsilon) .
\end{aligned}
$$

Date: November 6, 2003.

Hence $\lambda\left(G_{1} \times G_{2} \backslash K_{1} \times K_{2}\right)$ can be made arbitrarily small. By the approximation theorem, $X \times Y$ is \mathcal{L}^{n}-measurable.

General product spaces. Let $\left(X, \mathcal{M}_{X}, \mu_{X}\right)$ and $\left(Y, \mathcal{M}_{Y}, \mu_{Y}\right)$ be measure spaces. What is a measure on $X \times Y$? Define $\mathcal{M}_{X} \times \mathcal{M}_{Y}$ to be the smallest σ-algebra containing measurable rectangles (i.e., $A \times B$ with $A \in \mathcal{M}_{X}$ and $B \in \mathcal{M}_{Y}$).

Proposition 0.2. If $E \in \mathcal{M}_{X} \times \mathcal{M}_{Y}$, then E_{y} (the x-section of E at y) is in \mathcal{M}_{X} for all $y \in Y$.

Proof. Let Ω be the class of all $E \in \mathcal{M}_{X} \times \mathcal{M}_{Y}$ such that $E_{y} \in \mathcal{M}_{X}$ for every $y \in Y$. If $E=A \times B$, then clearly $E \in \Omega$. Then Ω is a σ-algebra: (a) $X \times Y \in \Omega$, (b) $E \in \Omega$, then $\left(E^{c}\right)_{y}=\left(E_{y}\right)^{c} \in \mathcal{M}_{X}$ since \mathcal{M}_{X} is a σ-algebra. (c) If $E_{i} \in \Omega$, then $\left(\cup_{i=1}^{\infty} E_{i}\right)_{y}=\cup_{i=1}^{\infty}\left(E_{i}\right)_{y} \in \mathcal{M}_{X}$ since M_{X} is a σ-algebra.

For $\mathbb{R}^{n}=\mathbb{R}^{\ell} \times \mathbb{R}^{m}$, it is not true that \mathcal{L}^{n} is the product measure (but it is the completion of the product measure). How do we define $\mu_{X \times Y}$?

Proposition 0.3. If $E \in \mathcal{M}_{X} \times \mathcal{M}_{Y}$, then $E_{y} \in \mathcal{M}_{X}$ for all y and $\lambda\left(E_{y}\right)$ is a measurable function on Y.

Define $\lambda_{X \times Y}(E)=\int_{Y} \lambda\left(E_{y}\right) d \mu_{Y}$. If X and Y are σ-finite (countable unions of sets with finite measure), then this also equals $\int_{X} \lambda\left(E_{X}\right) d \mu_{X}$.

Fubini's theorem. Let $\left(X, \mathcal{M}_{X}, \mu_{X}\right)$ and $\left(Y, \mathcal{M}_{Y}, \mu_{Y}\right)$ be σ-finite measure spaces and $f=\mathcal{M}_{X} \times \mathcal{M}_{Y}$ measurable. Then, for each $y \in Y$, f_{y} is \mathcal{M}_{X}-measurable, and for each $x \in X, f_{x}$ is \mathcal{M}_{Y}-measurable.
(a) Let $0 \leq f \leq \infty$,

$$
\varphi(x)=\int_{Y} f_{x} d \mu_{Y}, \quad \psi(y)=\int_{X} f_{y} d \mu_{X}
$$

Then φ is \mathcal{M}_{X}-measurable and ψ is M_{Y}-measurable, and

$$
\int_{X} \varphi d \mu_{X}=\int_{X \times Y} f d\left(\mu_{X} \times \mu_{Y}\right)=\int_{Y} \psi d \mu_{Y}
$$

(b) Let $f: X \times Y \rightarrow \mathbb{C}$. If $f \in L^{1}\left(\mu_{X} \times \mu_{Y}\right)$, then $f_{X} \in L^{1}\left(\mu_{Y}\right)$ for a.e. $x \in X$ and $f_{Y} \in L^{1}\left(\mu_{X}\right)$ for a.e. $y \in Y$, and the above holds $\left(\varphi \in L^{1}\left(\mu_{X}\right)\right.$ and $\left.\psi \in L^{1}\left(\mu_{Y}\right)\right)$.
If μ_{X} and μ_{Y} are complete and use $\overline{\mu_{X} \times \mu_{Y}}$ (the completion of $\mu_{X} \times \mu_{Y}$, then the only change is f_{Y} is \mathcal{M}_{X}-measurable for a.e. y and f_{X} is \mathcal{M}_{Y}-measurable for a.e. x.

Proposition 0.4. Let $f: X \times Y \rightarrow \mathbb{C}$ is $\mathcal{M}_{X} \times \mathcal{M}_{Y}$-measurable. Then
(a) for every $x \in X, f_{x}: Y \rightarrow \mathbb{C}$ is \mathcal{M}_{Y}-measurable,
(b) for every $y \in Y, f_{y}: X \rightarrow \mathbb{C}$ is \mathcal{M}_{X}-measurable.

Proof. If V is open, let $Q=f^{-1}(V), Q \in \mathcal{M}_{X} \times \mathcal{M}_{Y}$. We have $Q_{x}=\left\{y \mid f_{x}(y) \in V\right\}=f_{x}^{-1}(V) \in \mathcal{M}_{Y}$ from earlier.
Theorem 0.5. Let $\mathbb{R}^{n}=\mathbb{R}^{\ell} \times \mathbb{R}^{m}$. Then \mathcal{L}^{n} is the completion of $L^{\ell} \times \mathcal{L}^{m}$.

