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MEASURE AND INTEGRATION: LECTURE 19 

Product spaces in Rn . 

Proposition 0.1. Let Rn = R� × Rm . Let X ⊂ R� be L�measurable 
and Y ⊂ Rm be Lmmeasurable. Then X × Y ⊂ Rn is Lnmeasurable, 
and λ(X × Y ) = λ(X)λ(Y ). 

Proof. If X × Y ∈ Ln, then by Fubini I, 

λ(X × Y ) = χ(X×Y ) dz = χX χY dz 
Rn Rn 

= χX χY dx dy = λ(X)λ(Y ). 
Rm R� 

nJust NTS X × Y ∈ L . 
We may assume X and Y have finite measure. Let X = ∪∞ Xk andk=1

Y = ∪∞ Yk , where Xk = X ∩B(0, k) and Yk = Y ∩B(0, k). Then k=1 
∞
X × Y = Xk × Yk. 

j,k 

nSo if Xk × Yk ∈ Ln, since Ln is a σalgebra, then X × Y ∈ L . 
Now, given � > 0, there exists K1 ⊂ X ⊂ G1 and K2 ⊂ Y ⊂ G2, 

with K1 ⊂ R� and K2 ⊂ Rm compact, G1 ⊂ R� and G2 ⊂ Rm open, 
such that λ�(G1 \K1) < � and λm(G2 \K2) < �. We have K1 ×K2 ⊂ Rn 

is compact, G1 ×G2 ⊂ Rn is open, and K1 ×K2 ⊂ X × Y ⊂ G1 ×G2. 
Now 
G1 ×G2 \K1 ×K2 = ((G1 \K1) ×G2) ∪ (K1 × (G2 \K2)) 

⊂ ((G1 \K1) ×G2) ∪ (G1 × (G2 \K2)) . 

Thus, 

λ(G1 ×G2 \K1 ×K2) = λ(G1 \K1)λ(G2) + λ(G1)λ(G2 \K2) 

≤ �λ(G2) + �λ(G1) 

< �(λ(K2) + �) + �(λ(K1) + �) 

≤ �(λ(X) + λ(Y ) + 2�). 
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2 MEASURE AND INTEGRATION: LECTURE 19 

Hence λ(G1 × G2 \ K1 × K2) can be made arbitrarily small. By the 
approximation theorem, X × Y is Lnmeasurable. � 

General product spaces. Let (X, MX , µX ) and (Y, MY , µY ) be mea
sure spaces. What is a measure on X × Y ? Define M Y to be X ×M
the smallest σalgebra containing measurable rectangles (i.e., A × B 
with A ∈MX and B ∈MY ). 

Proposition 0.2. If E ∈ M Y , then Ey (the xsection of E atX ×M
y) is in MX for all y ∈ Y . 

Proof. Let Ω be the class of all E ∈ M Y such that Ey XX ×M ∈ M
for every y ∈ Y . If E = A × B, then clearly E ∈ Ω. Then Ω is a 
σalgebra: (a) X ×Y ∈ Ω, (b) E ∈ Ω, then (Ec)y = (Ey )

c
X since∈M

X is a σalgebra. (c) If Ei ∈ Ω, then (∪∞i=1Ei)y = ∪∞ XM i=1(Ei)y ∈ M
�since MX is a σalgebra. 

For Rn = R� × Rm, it is not true that Ln is the product measure 
(but it is the completion of the product measure). How do we define 
µX ×Y ? 

Proposition 0.3. If E ∈ M Y , then Ey X for all y andX ×M ∈ M
λ(Ey ) is a measurable function on Y . 

Define λX×Y (E) = λ(Ey ) dµY . If X and Y are σfinite (countable 
Y � 

unions of sets with finite measure), then this also equals 
X λ(EX ) dµX . 

Fubini’s theorem. Let (X, MX , µX ) and (Y, MY , µY ) be σfinite mea
sure spaces and f = Y measurable. Then, for each y ∈ Y , fyMX ×M
is MX measurable, and for each x ∈ X, fx is MY measurable. 

(a) Let 0 ≤ f ≤ ∞, 

ϕ(x) = fx dµY , ψ(y) = fy dµX . 
Y X 

Then ϕ is MX measurable and ψ is MY measurable, and 

ϕ dµX = f d(µX × µY ) = ψ dµY . 
X X×Y Y 

(b) Let f : X × Y → C. If f ∈ L1(µX × µY ), then fX ∈ L1(µY ) 
for a.e. x ∈ X and fY ∈ L1(µX ) for a.e. y ∈ Y , and the above 
holds (ϕ ∈ L1(µX ) and ψ ∈ L1(µY )). 

If µX and µY are complete and use µX × µY (the completion of 
µX × µY , then the only change is fY is MX measurable for a.e. y and 
fX is MY measurable for a.e. x. 

Proposition 0.4. Let f : X ×Y → C is M Y measurable. Then X ×M
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(a) for every x ∈ X, fx : Y → C is MY measurable, 
(b) for every y ∈ Y , fy : X → C is MX measurable. 

Proof. If V is open, let Q = f −1(V ), Q ∈ MX × MY . We have 
Qx = {y fx(y) ∈ V } = fx

−1 
Y from earlier. �| (V ) ∈M

Theorem 0.5. Let Rn = R� × Rm . Then Ln is the completion of 
L� .× Lm 


