MEASURE AND INTEGRATION: LECTURE 19

Product spaces in \mathbb{R}^n .

Proposition 0.1. Let $\mathbb{R}^n = \mathbb{R}^{\ell} \times \mathbb{R}^m$. Let $X \subset \mathbb{R}^{\ell}$ be \mathcal{L}^{ℓ} -measurable and $Y \subset \mathbb{R}^m$ be \mathcal{L}^m -measurable. Then $X \times Y \subset \mathbb{R}^n$ is \mathcal{L}^n -measurable, and $\lambda(X \times Y) = \lambda(X)\lambda(Y)$.

Proof. If $X \times Y \in \mathcal{L}^n$, then by Fubini I,

$$\lambda(X \times Y) = \int_{\mathbb{R}^n} \chi_{(X \times Y)} \, dz = \int_{\mathbb{R}^n} \chi_X \chi_Y \, dz$$
$$= \int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^\ell} \chi_X \chi_Y dx \right) dy = \lambda(X) \lambda(Y).$$

Just NTS $X \times Y \in \mathcal{L}^n$.

We may assume X and Y have finite measure. Let $X = \bigcup_{k=1}^{\infty} X_k$ and $Y = \bigcup_{k=1}^{\infty} Y_k$, where $X_k = X \cap B(0, k)$ and $Y_k = Y \cap B(0, k)$. Then

$$X \times Y = \bigcup_{j,k}^{\infty} X_k \times Y_k.$$

So if $X_k \times Y_k \in \mathcal{L}^n$, since L^n is a σ -algebra, then $X \times Y \in \mathcal{L}^n$.

Now, given $\epsilon > 0$, there exists $K_1 \subset X \subset G_1$ and $K_2 \subset Y \subset G_2$, with $K_1 \subset \mathbb{R}^{\ell}$ and $K_2 \subset \mathbb{R}^m$ compact, $G_1 \subset \mathbb{R}^{\ell}$ and $G_2 \subset \mathbb{R}^m$ open, such that $\lambda^{\ell}(G_1 \setminus K_1) < \epsilon$ and $\lambda^m(G_2 \setminus K_2) < \epsilon$. We have $K_1 \times K_2 \subset \mathbb{R}^n$ is compact, $G_1 \times G_2 \subset \mathbb{R}^n$ is open, and $K_1 \times K_2 \subset X \times Y \subset G_1 \times G_2$. Now

$$G_1 \times G_2 \setminus K_1 \times K_2 = ((G_1 \setminus K_1) \times G_2) \cup (K_1 \times (G_2 \setminus K_2))$$

$$\subset ((G_1 \setminus K_1) \times G_2) \cup (G_1 \times (G_2 \setminus K_2)).$$

Thus,

$$\lambda(G_1 \times G_2 \setminus K_1 \times K_2) = \lambda(G_1 \setminus K_1)\lambda(G_2) + \lambda(G_1)\lambda(G_2 \setminus K_2)$$

$$\leq \epsilon\lambda(G_2) + \epsilon\lambda(G_1)$$

$$< \epsilon(\lambda(K_2) + \epsilon) + \epsilon(\lambda(K_1) + \epsilon)$$

$$\leq \epsilon(\lambda(X) + \lambda(Y) + 2\epsilon).$$

Date: November 6, 2003.

Hence $\lambda(G_1 \times G_2 \setminus K_1 \times K_2)$ can be made arbitrarily small. By the approximation theorem, $X \times Y$ is \mathcal{L}^n -measurable.

General product spaces. Let $(X, \mathcal{M}_X, \mu_X)$ and $(Y, \mathcal{M}_Y, \mu_Y)$ be measure spaces. What is a measure on $X \times Y$? Define $\mathcal{M}_X \times \mathcal{M}_Y$ to be the smallest σ -algebra containing measurable rectangles (i.e., $A \times B$ with $A \in \mathcal{M}_X$ and $B \in \mathcal{M}_Y$).

Proposition 0.2. If $E \in \mathcal{M}_X \times \mathcal{M}_Y$, then E_y (the x-section of E at y) is in \mathcal{M}_X for all $y \in Y$.

Proof. Let Ω be the class of all $E \in \mathcal{M}_X \times \mathcal{M}_Y$ such that $E_y \in \mathcal{M}_X$ for every $y \in Y$. If $E = A \times B$, then clearly $E \in \Omega$. Then Ω is a σ -algebra: (a) $X \times Y \in \Omega$, (b) $E \in \Omega$, then $(E^c)_y = (E_y)^c \in \mathcal{M}_X$ since \mathcal{M}_X is a σ -algebra. (c) If $E_i \in \Omega$, then $(\bigcup_{i=1}^{\infty} E_i)_y = \bigcup_{i=1}^{\infty} (E_i)_y \in \mathcal{M}_X$ since \mathcal{M}_X is a σ -algebra. \Box

For $\mathbb{R}^n = \mathbb{R}^{\ell} \times \mathbb{R}^m$, it is not true that \mathcal{L}^n is the product measure (but it is the completion of the product measure). How do we define $\mu_{X \times Y}$?

Proposition 0.3. If $E \in \mathcal{M}_X \times \mathcal{M}_Y$, then $E_y \in \mathcal{M}_X$ for all y and $\lambda(E_y)$ is a measurable function on Y.

Define $\lambda_{X \times Y}(E) = \int_Y \lambda(E_y) d\mu_Y$. If X and Y are σ -finite (countable unions of sets with finite measure), then this also equals $\int_X \lambda(E_X) d\mu_X$.

Fubini's theorem. Let $(X, \mathcal{M}_X, \mu_X)$ and $(Y, \mathcal{M}_Y, \mu_Y)$ be σ -finite measure spaces and $f = \mathcal{M}_X \times \mathcal{M}_Y$ measurable. Then, for each $y \in Y$, f_y is \mathcal{M}_X -measurable, and for each $x \in X$, f_x is \mathcal{M}_Y -measurable.

(a) Let $0 \le f \le \infty$,

$$\varphi(x) = \int_Y f_x d\mu_Y, \quad \psi(y) = \int_X f_y d\mu_X.$$

Then φ is \mathcal{M}_X -measurable and ψ is M_Y -measurable, and

$$\int_X \varphi \ d\mu_X = \int_{X \times Y} f \ d(\mu_X \times \mu_Y) = \int_Y \psi \ d\mu_Y$$

(b) Let $f: X \times Y \to \mathbb{C}$. If $f \in L^1(\mu_X \times \mu_Y)$, then $f_X \in L^1(\mu_Y)$ for a.e. $x \in X$ and $f_Y \in L^1(\mu_X)$ for a.e. $y \in Y$, and the above holds ($\varphi \in L^1(\mu_X)$) and $\psi \in L^1(\mu_Y)$).

If μ_X and μ_Y are complete and use $\overline{\mu_X \times \mu_Y}$ (the completion of $\mu_X \times \mu_Y$, then the only change is f_Y is \mathcal{M}_X -measurable for a.e. y and f_X is \mathcal{M}_Y -measurable for a.e. x.

Proposition 0.4. Let $f: X \times Y \to \mathbb{C}$ is $\mathcal{M}_X \times \mathcal{M}_Y$ -measurable. Then

- (a) for every $x \in X$, $f_x \colon Y \to \mathbb{C}$ is \mathcal{M}_Y -measurable, (b) for every $y \in Y$, $f_y \colon X \to \mathbb{C}$ is \mathcal{M}_X -measurable.

Proof. If V is open, let $Q = f^{-1}(V), Q \in \mathcal{M}_X \times \mathcal{M}_Y$. We have $Q_x = \{y \mid f_x(y) \in V\} = f_x^{-1}(V) \in \mathcal{M}_Y$ from earlier.

Theorem 0.5. Let $\mathbb{R}^n = \mathbb{R}^\ell \times \mathbb{R}^m$. Then \mathcal{L}^n is the completion of $L^{\ell} \times \mathcal{L}^m$.