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MEASURE AND INTEGRATION: LECTURE 18 

Fubini’s theorem 

Notation. Let � and m be positive integers, and n = � + m. Write Rn 

as the Cartesian product Rn = R� + Rm . We will write points in Rn as 

z ∈ Rn; x ∈ R�; y ∈ Rm; 

z = (x, y). 

If f is a function on Rn and y ∈ Rm is fixed, then fy is the function on 
R� defined by 

fy (x) = f (x, y). 

The function fy is called the section of f determined by y. In particular, 
if A ⊂ Rn and f = χA, then 

fy (x) =
1 if (x, y) ∈ A; 

0 if (x, y) �∈ A. 

In this case, fy is the characteristic function of a subset of R�, and a 
point x ∈ R� is in this set if and only if (x, y) ∈ A. This set will be 
denoted by 

Ay = {x ∈ R� (x, y) ∈ A},|
and is called the section of A determined by y. 

Now let f be any function on Rn . For a fixed y ∈ Rm, it may be 
that the function fy on R� is integrable. In this case, let 

F (y) = fy (x) dx. 
R� 

Of course, fy must be Lmeasurable, but there are two ways F (y) could 
exist: (1) fy ≥ 0, in which case 0 ≤ F (y) ≤ ∞, and (2) fy ∈ L1(R�), 
in which case −∞ < F (y) < ∞. 

We eventually want to prove the equation 

F (y) dy = f (z) dz. 
Rm Rn 

To show this, we assume f is Lmeasurable and integrable, and prove 
that F (y) exists for 
integrable on Rm . 

a.e. y ∈ Rm and that F is Lmeasurable and 
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2 MEASURE AND INTEGRATION: LECTURE 18 

However, it cannot be expected that fy is an Lmeasurable function 
for all y ∈ Rm . Indeed, let E ⊂ R� be a nonmeasurable set, fix 
y0 ∈ Rm, and let A = E × {y0}. Then Ay = ∅ if y = y0 but Ay0 = E. 
The set A is measurable with λ(A) = 0. But Ay0 is not measurable. 

Fubini I: Nonnegative functions. 

Theorem 0.1. Assume that f : Rn → [0, ∞] is Lmeasurable. Then 
for a.e. y ∈ Rm, the function fy : R� → [0, ∞] is Lmeasurable, and so 

F (y) = fy (x) dx 
R� 

exists. Moreover, F is Lmeasurable on Rm, and 

F (y) dy = f (x) dz. 
Rm Rn 

The second equation will be abbreviated � �� � � 
f (x, y) dx dy = f (x, y) dx dy, 

Rm R� Rn 

and the LHS of this equation will often be written 

f (x, y) dx dy or dy f (x, y) dx. 
Rm R� Rm R� 

Proof. The proof is long, and is broken into 10 steps. 

(1) Let J be a special rectangle. Then J = J1 × J2, with J1 and J2 

special rectangles in R� and Rm . Then for any y ∈ Rm , 

J1 if y ∈ J2;
Jy = 

if y �∈ J2.∅ 

Thus, λ(Jy ) = λ(J1)χJ2 (y), and so 

λ(Jy ) dy = λ(J1)λ(J2) 
Rm 

= λ(J ). 

(2) Let G ⊂ Rn be open, and write G = Jk , with each Jk ak=1∪∞
disjoint rectangle. Thus, 
∞

Gy = Jk,y 

k=1 
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is a disjoint union, and so λ(Gy ) = λ(Jk,y ). Thus, � ∞ � 
λ(Gy ) dy = λ(Jk,y ) dy 

Rm Rm 
k=1 
∞

= λ(Jk ) 
k=1 

= λ(G). 

(3) Let K ⊂ Rn be compact, and choose G ⊃ K open and bounded. 
Apply (2) to G \K: 

λ(Gy \Ky ) dy = λ(G \K); 
Rm 

λ(Gy ) dy − λ(Ky ) dy = λ(G) − λ(K). 
Rm Rm 

Thus, applying (2) to G gives 

λ(Ky ) dy = λ(K). 
Rm 

(4) Let K1 ⊂ K2 ⊂ · · · be compact. Let B = ∪k Kj . Then for all 
y ∈ Rm , 
∞

By = Kj,y . 
j=1 

So By is measurable, λ(By ) = limj → ∞λ(Kj,y ) is increasing, 
so by monotone convergence, 

λ(By ) dy = lim λ(Kj,y ) dy 
Rm Rmj→∞ 

= lim λ(Kj ) by (3) 
j→∞ 

= λ(B). 

(5) Let G1 ⊃ G2 ⊃ · · · be open and bounded. Let C = ∩j Gj and 
let K ⊃ G1. Applying (4), 
∞

K \ C = (K \Gj ), 
j=1 

and so �

λ(Ky \ Cy ) dy = λ(K \ C).


Rm 

Since �

λ(Ky ) dy = λ(K),


Rm 
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the result follows for C. 
(6) This step is the most important.	 Let A be bounded and mea

surable. By the approximation theorem, there exist compact 
sets Kj and bounded open sets Gj such that 

K1 ⊂ K2 ⊂ · · · ⊂ A ⊂ · · · ⊂ G2 ⊂ G1 

and 

lim λ(Kj ) = λ(A) = lim λ(Gj ). 
j→∞	 j→∞ 

Let 
∞	 ∞

B = Kj and C = . 
j=1 j=1 

Then B ⊂ A ⊂ C and λ(B) = λ(A) = λ(C). Thus, by (4) and 
(5), 

(λ(Cy ) − λ(By )) dy = 0, 
Rm 

and so λ(Cy ) − λ(By ) = 0 for a.e. y ∈ Rm . This means that 
Cy \By has measure zero in R� for a.e. y ∈ Rm, and for these y, 
By ⊂ Ay ⊂ Cy ⇒ Ay = By ∪N , where N is a null set. Hence, 
Ay is measurable for a.e. y, λ(Ay ) is a measurable function of 
y, and 

λ(Ay ) dy = λ(By ) dy 
Rm Rm 

= λ(B) = λ(A). 

(7) Observe that if the theorem is valid for each function 0 ≤ f1 ≤
f2 ≤ · · · , then it is valid for f = lim fj . This is due to monotone 
convergence, (2) and (4). Since fj,y is measurable for a.e. y, fy 

is Lmeasurable for a.e. y, and thus for a.e. y ∈ Rm , 

F (y) = fy (x) dx 
R� 

= lim fj,y (x) dx 
R�j→∞ 

= lim Fj (y). 
j→∞ 
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Since this is an increasing limit and Fj is measurable, so is F , 
and by monotone convergence, 

F (y) dy = lim Fj (y) dy 
Rm j→∞ �Rm 

= lim fj (z) dz 
j→∞� Rn 

= f (z) dz. 
Rn 

(8) Let	 fj be the characteristic function of the bounded set A ∩
B(0, j). Then the theorem is valid for the characteristic func
tion of any measurable set by (6) the observation in (7). 

(9) Since nonnegative measurable simple functions are (finite) lin
ear combinations of functions in (8), the theorem follows for 
them. 

(10) The theorem follows from the theorem that states that there 
exists a sequence of simple measurable functions converging to 
any nonnegative measurable function. 

Fubini II: Integrable functions. 

Theorem 0.2. Assume that f ∈ L1(Rn). Then for a.e. y ∈ Rm, the 
function fy ∈ L1(R�), and 

F (y) = fy (x) dx 
R� 

exists. Moreover, F ∈ L1(Rm), and 

F (y) dy = f (z) dz. 
Rm Rn 

Proof. Write f = f + − f − and apply Fubini I. Define � � 
G(y) = 

R� 

f −y dx, H(y) = 
R� 

f + 
y dx, 

so that � � � � 
G dy = f − dz, H dy = f + dz. 

Rm Rn Rm Rn 

Because the integrals are finite, G(y) < ∞ and H(y) < ∞ a.e. and 
thus fy ∈ L1(R�). Also, F (y) = H(y) − G(y) a.e., and so F ∈ L1(Rm) 
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and 

F dy = H dy − G dy 
Rm �Rm �Rm 

= f + dz − f − dz 
Rn�Rn 

= f dz. 
Rn 

Example of Fubini’s theorem. Let us calculate the integral 

y sin xe−xy dx dy, 
E 

where E = (0, ∞) × (0, 1). Since the integrand is a a continuous func
tion, it is Lmeasurable. We have by integration by parts 

∞ 

F (y) = y sin xe−xy dx 
0 
y 

= . 
y2 + 1 

Thus, � 1 1 
F (y) dy = log 2. 

20 

Now, since f (x, y) ≤ ye−xy , we may apply Fubini I to see that 

f (x, y)| dx dy ≤ ye−xy dx dy |
E E� 1 � ∞ 

= dy ye−xy dx 
0 0� 1 

= dy 
0 

= 1. 

Doing integration with respect to y first yields � 1 � � 
sin x 

y sin xe−xy dy =
1 − e−x 

− e−x . 
0 x x 

Thus, Fubini’s theorem shows that 
∞ sin x 11 − e−x 

− e−x dx = log 2. 
0 x x 2 


