MEASURE AND INTEGRATION: LECTURE 18

FUBINI'S THEOREM

Notation. Let ℓ and m be positive integers, and $n = \ell + m$. Write \mathbb{R}^n as the Cartesian product $\mathbb{R}^n = \mathbb{R}^\ell + \mathbb{R}^m$. We will write points in \mathbb{R}^n as

$$z \in \mathbb{R}^n; \quad x \in \mathbb{R}^\ell; \quad y \in \mathbb{R}^m;$$

 $z = (x, y).$

If f is a function on \mathbb{R}^n and $y \in \mathbb{R}^m$ is fixed, then f_y is the function on \mathbb{R}^ℓ defined by

$$f_y(x) = f(x, y).$$

The function f_y is called the *section* of f determined by y. In particular, if $A \subset \mathbb{R}^n$ and $f = \chi_A$, then

$$f_y(x) = \begin{cases} 1 & \text{if } (x, y) \in A; \\ 0 & \text{if } (x, y) \notin A. \end{cases}$$

In this case, f_y is the characteristic function of a subset of \mathbb{R}^{ℓ} , and a point $x \in \mathbb{R}^{\ell}$ is in this set if and only if $(x, y) \in A$. This set will be denoted by

$$A_y = \{ x \in \mathbb{R}^\ell \mid (x, y) \in A \},\$$

and is called the *section* of A determined by y.

Now let f be any function on \mathbb{R}^n . For a fixed $y \in \mathbb{R}^m$, it may be that the function f_y on \mathbb{R}^{ℓ} is integrable. In this case, let

$$F(y) = \int_{\mathbb{R}^\ell} f_y(x) \, dx.$$

Of course, f_y must be \mathcal{L} -measurable, but there are two ways F(y) could exist: (1) $f_y \geq 0$, in which case $0 \leq F(y) \leq \infty$, and (2) $f_y \in L^1(\mathbb{R}^\ell)$, in which case $-\infty < F(y) < \infty$.

We eventually want to prove the equation

$$\int_{\mathbb{R}^m} F(y) \, dy = \int_{\mathbb{R}^n} f(z) \, dz$$

To show this, we assume f is \mathcal{L} -measurable and integrable, and prove that F(y) exists for a.e. $y \in \mathbb{R}^m$ and that F is \mathcal{L} -measurable and integrable on \mathbb{R}^m .

Date: November 4, 2003.

However, it cannot be expected that f_y is an \mathcal{L} -measurable function for all $y \in \mathbb{R}^m$. Indeed, let $E \subset \mathbb{R}^\ell$ be a non-measurable set, fix $y_0 \in \mathbb{R}^m$, and let $A = E \times \{y_0\}$. Then $A_y = \emptyset$ if $y \neq y_0$ but $A_{y_0} = E$. The set A is measurable with $\lambda(A) = 0$. But A_{y_0} is not measurable.

Fubini I: Non-negative functions.

Theorem 0.1. Assume that $f : \mathbb{R}^n \to [0, \infty]$ is \mathcal{L} -measurable. Then for a.e. $y \in \mathbb{R}^m$, the function $f_y : \mathbb{R}^\ell \to [0, \infty]$ is \mathcal{L} -measurable, and so

$$F(y) = \int_{\mathbb{R}^\ell} f_y(x) \ dx$$

exists. Moreover, F is \mathcal{L} -measurable on \mathbb{R}^m , and

$$\int_{\mathbb{R}^m} F(y) \, dy = \int_{\mathbb{R}^n} f(x) \, dz.$$

The second equation will be abbreviated

$$\int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^\ell} f(x, y) \, dx \right) \, dy = \int_{\mathbb{R}^n} f(x, y) \, dx \, dy,$$

and the LHS of this equation will often be written

$$\int_{\mathbb{R}^m} \int_{\mathbb{R}^\ell} f(x, y) \, dx \, dy \quad \text{or} \quad \int_{\mathbb{R}^m} dy \int_{\mathbb{R}^\ell} f(x, y) \, dx.$$

Proof. The proof is long, and is broken into 10 steps.

(1) Let J be a special rectangle. Then $J = J_1 \times J_2$, with J_1 and J_2 special rectangles in \mathbb{R}^{ℓ} and \mathbb{R}^m . Then for any $y \in \mathbb{R}^m$,

$$J_y = \begin{cases} J_1 & \text{if } y \in J_2; \\ \emptyset & \text{if } y \notin J_2. \end{cases}$$

Thus, $\lambda(J_y) = \lambda(J_1)\chi_{J_2}(y)$, and so

$$\int_{\mathbb{R}^m} \lambda(J_y) \, dy = \lambda(J_1)\lambda(J_2)$$
$$= \lambda(J).$$

(2) Let $G \subset \mathbb{R}^n$ be open, and write $G = \bigcup_{k=1}^{\infty} J_k$, with each J_k a disjoint rectangle. Thus,

$$G_y = \bigcup_{k=1}^{\infty} J_{k,y}$$

is a disjoint union, and so $\lambda(G_y) = \sum \lambda(J_{k,y})$. Thus,

$$\int_{\mathbb{R}^m} \lambda(G_y) \, dy = \sum_{k=1}^\infty \int_{\mathbb{R}^m} \lambda(J_{k,y}) \, dy$$
$$= \sum_{k=1}^\infty \lambda(J_k)$$
$$= \lambda(G).$$

(3) Let $K \subset \mathbb{R}^n$ be compact, and choose $G \supset K$ open and bounded. Apply (2) to $G \setminus K$:

$$\int_{\mathbb{R}^m} \lambda(G_y \setminus K_y) \, dy = \lambda(G \setminus K);$$
$$\int_{\mathbb{R}^m} \lambda(G_y) \, dy - \int_{\mathbb{R}^m} \lambda(K_y) \, dy = \lambda(G) - \lambda(K).$$

Thus, applying (2) to G gives

$$\int_{\mathbb{R}^m} \lambda(K_y) \, dy = \lambda(K).$$

(4) Let $K_1 \subset K_2 \subset \cdots$ be compact. Let $B = \bigcup_k K_j$. Then for all $y \in \mathbb{R}^m$,

$$B_y = \bigcup_{j=1}^{\infty} K_{j,y}.$$

So B_y is measurable, $\lambda(B_y) = \lim_{j \to \infty} \lambda(K_{j,y})$ is increasing, so by monotone convergence,

$$\int_{\mathbb{R}^m} \lambda(B_y) \, dy = \lim_{j \to \infty} \int_{\mathbb{R}^m} \lambda(K_{j,y}) \, dy$$
$$= \lim_{j \to \infty} \lambda(K_j) \quad \text{by (3)}$$
$$= \lambda(B).$$

(5) Let $G_1 \supset G_2 \supset \cdots$ be open and bounded. Let $C = \bigcap_j G_j$ and let $K \supset G_1$. Applying (4),

$$K \setminus C = \bigcup_{j=1}^{\infty} (K \setminus G_j),$$

and so

$$\int_{\mathbb{R}^m} \lambda(K_y \setminus C_y) \, dy = \lambda(K \setminus C).$$

Since

$$\int_{\mathbb{R}^m} \lambda(K_y) \, dy = \lambda(K),$$

the result follows for C.

(6) This step is the most important. Let A be bounded and measurable. By the approximation theorem, there exist compact sets K_j and bounded open sets G_j such that

$$K_1 \subset K_2 \subset \cdots \subset A \subset \cdots \subset G_2 \subset G_1$$

and

$$\lim_{j \to \infty} \lambda(K_j) = \lambda(A) = \lim_{j \to \infty} \lambda(G_j).$$

Let

$$B = \bigcup_{j=1}^{\infty} K_j$$
 and $C = \bigcap_{j=1}^{\infty} .$

Then $B \subset A \subset C$ and $\lambda(B) = \lambda(A) = \lambda(C)$. Thus, by (4) and (5),

$$\int_{\mathbb{R}^m} \left(\lambda(C_y) - \lambda(B_y) \right) \, dy = 0,$$

and so $\lambda(C_y) - \lambda(B_y) = 0$ for a.e. $y \in \mathbb{R}^m$. This means that $C_y \setminus B_y$ has measure zero in \mathbb{R}^ℓ for a.e. $y \in \mathbb{R}^m$, and for these y, $B_y \subset A_y \subset C_y \Rightarrow A_y = B_y \cup N$, where N is a null set. Hence, A_y is measurable for a.e. $y, \lambda(A_y)$ is a measurable function of y, and

$$\int_{\mathbb{R}^m} \lambda(A_y) \, dy = \int_{\mathbb{R}^m} \lambda(B_y) \, dy$$
$$= \lambda(B) = \lambda(A).$$

(7) Observe that if the theorem is valid for each function $0 \leq f_1 \leq f_2 \leq \cdots$, then it is valid for $f = \lim f_j$. This is due to monotone convergence, (2) and (4). Since $f_{j,y}$ is measurable for a.e. y, f_y is \mathcal{L} -measurable for a.e. y, and thus for a.e. $y \in \mathbb{R}^m$,

$$F(y) = \int_{\mathbb{R}^{\ell}} f_y(x) \, dx$$
$$= \lim_{j \to \infty} \int_{\mathbb{R}^{\ell}} f_{j,y}(x) \, dx$$
$$= \lim_{j \to \infty} F_j(y).$$

4

Since this is an increasing limit and F_j is measurable, so is F, and by monotone convergence,

$$\int_{\mathbb{R}^m} F(y) \, dy = \lim_{j \to \infty} \int_{\mathbb{R}^m} F_j(y) \, dy$$
$$= \lim_{j \to \infty} \int_{\mathbb{R}^n} f_j(z) \, dz$$
$$= \int_{\mathbb{R}^n} f(z) \, dz.$$

- (8) Let f_j be the characteristic function of the bounded set $A \cap B(0,j)$. Then the theorem is valid for the characteristic function of any measurable set by (6) the observation in (7).
- (9) Since non-negative measurable simple functions are (finite) linear combinations of functions in (8), the theorem follows for them.
- (10) The theorem follows from the theorem that states that there exists a sequence of simple measurable functions converging to any non-negative measurable function.

Fubini II: Integrable functions.

Theorem 0.2. Assume that $f \in L^1(\mathbb{R}^n)$. Then for a.e. $y \in \mathbb{R}^m$, the function $f_y \in L^1(\mathbb{R}^\ell)$, and

$$F(y) = \int_{\mathbb{R}^\ell} f_y(x) \ dx$$

exists. Moreover, $F \in L^1(\mathbb{R}^m)$, and

$$\int_{\mathbb{R}^m} F(y) \, dy = \int_{\mathbb{R}^n} f(z) \, dz.$$

Proof. Write $f = f^+ - f^-$ and apply Fubini I. Define

$$G(y) = \int_{\mathbb{R}^\ell} f_y^- dx, \quad H(y) = \int_{\mathbb{R}^\ell} f_y^+ dx,$$

so that

$$\int_{\mathbb{R}^m} G \, dy = \int_{\mathbb{R}^n} f^- \, dz, \quad \int_{\mathbb{R}^m} H \, dy = \int_{\mathbb{R}^n} f^+ \, dz.$$

Because the integrals are finite, $G(y) < \infty$ and $H(y) < \infty$ a.e. and thus $f_y \in L^1(\mathbb{R}^\ell)$. Also, F(y) = H(y) - G(y) a.e., and so $F \in L^1(\mathbb{R}^m)$

and

$$\int_{\mathbb{R}^m} F \, dy = \int_{\mathbb{R}^m} H \, dy - \int_{\mathbb{R}^m} G \, dy$$
$$= \int_{\mathbb{R}^n} f^+ \, dz - \int_{\mathbb{R}^n} f^- \, dz$$
$$= \int_{\mathbb{R}^n} f \, dz.$$

Example of Fubini's theorem. Let us calculate the integral

$$\int_E y \sin x e^{-xy} \, dx \, dy,$$

where $E = (0, \infty) \times (0, 1)$. Since the integrand is a continuous function, it is \mathcal{L} -measurable. We have by integration by parts

$$F(y) = \int_0^\infty y \sin x e^{-xy} dx$$
$$= \frac{y}{y^2 + 1}.$$

Thus,

$$\int_0^1 F(y) \, dy = \frac{1}{2} \log 2.$$

Now, since $|f(x,y)| \leq ye^{-xy}$, we may apply Fubini I to see that

$$\int_{E} |f(x,y)| \, dx \, dy \leq \int_{E} y e^{-xy} \, dx \, dy$$
$$= \int_{0}^{1} \, dy \int_{0}^{\infty} y e^{-xy} \, dx$$
$$= \int_{0}^{1} \, dy$$
$$= 1.$$

Doing integration with respect to y first yields

$$\int_0^1 y \sin x e^{-xy} \, dy = \frac{\sin x}{x} \left(\frac{1 - e^{-x}}{x} - e^{-x} \right).$$

Thus, Fubini's theorem shows that

$$\int_0^\infty \frac{\sin x}{x} \left(\frac{1 - e^{-x}}{x} - e^{-x} \right) \, dx = \frac{1}{2} \log 2.$$

6