MEASURE AND INTEGRATION: LECTURE 18

FUBINI's THEOREM

Notation. Let ℓ and m be positive integers, and $n=\ell+m$. Write \mathbb{R}^{n} as the Cartesian product $\mathbb{R}^{n}=\mathbb{R}^{\ell}+\mathbb{R}^{m}$. We will write points in \mathbb{R}^{n} as

$$
\begin{aligned}
z \in \mathbb{R}^{n} ; & x \in \mathbb{R}^{\ell} ; \quad y \in \mathbb{R}^{m} \\
& z=(x, y)
\end{aligned}
$$

If f is a function on \mathbb{R}^{n} and $y \in \mathbb{R}^{m}$ is fixed, then f_{y} is the function on \mathbb{R}^{ℓ} defined by

$$
f_{y}(x)=f(x, y)
$$

The function f_{y} is called the section of f determined by y. In particular, if $A \subset \mathbb{R}^{n}$ and $f=\chi_{A}$, then

$$
f_{y}(x)= \begin{cases}1 & \text { if }(x, y) \in A \\ 0 & \text { if }(x, y) \notin A\end{cases}
$$

In this case, f_{y} is the characteristic function of a subset of \mathbb{R}^{ℓ}, and a point $x \in \mathbb{R}^{\ell}$ is in this set if and only if $(x, y) \in A$. This set will be denoted by

$$
A_{y}=\left\{x \in \mathbb{R}^{\ell} \mid(x, y) \in A\right\}
$$

and is called the section of A determined by y.
Now let f be any function on \mathbb{R}^{n}. For a fixed $y \in \mathbb{R}^{m}$, it may be that the function f_{y} on \mathbb{R}^{ℓ} is integrable. In this case, let

$$
F(y)=\int_{\mathbb{R}^{e}} f_{y}(x) d x
$$

Of course, f_{y} must be \mathcal{L}-measurable, but there are two ways $F(y)$ could exist: (1) $f_{y} \geq 0$, in which case $0 \leq F(y) \leq \infty$, and (2) $f_{y} \in L^{1}\left(\mathbb{R}^{\ell}\right)$, in which case $-\infty<F(y)<\infty$.

We eventually want to prove the equation

$$
\int_{\mathbb{R}^{m}} F(y) d y=\int_{\mathbb{R}^{n}} f(z) d z
$$

To show this, we assume f is \mathcal{L}-measurable and integrable, and prove that $F(y)$ exists for a.e. $y \in \mathbb{R}^{m}$ and that F is \mathcal{L}-measurable and integrable on \mathbb{R}^{m}.

[^0]However, it cannot be expected that f_{y} is an \mathcal{L}-measurable function for all $y \in \mathbb{R}^{m}$. Indeed, let $E \subset \mathbb{R}^{\ell}$ be a non-measurable set, fix $y_{0} \in \mathbb{R}^{m}$, and let $A=E \times\left\{y_{0}\right\}$. Then $A_{y}=\emptyset$ if $y \neq y_{0}$ but $A_{y_{0}}=E$. The set A is measurable with $\lambda(A)=0$. But $A_{y_{0}}$ is not measurable.

Fubini I: Non-negative functions.

Theorem 0.1. Assume that $f: \mathbb{R}^{n} \rightarrow[0, \infty]$ is \mathcal{L}-measurable. Then for a.e. $y \in \mathbb{R}^{m}$, the function $f_{y}: \mathbb{R}^{\ell} \rightarrow[0, \infty]$ is \mathcal{L}-measurable, and so

$$
F(y)=\int_{\mathbb{R}^{e}} f_{y}(x) d x
$$

exists. Moreover, F is \mathcal{L}-measurable on \mathbb{R}^{m}, and

$$
\int_{\mathbb{R}^{m}} F(y) d y=\int_{\mathbb{R}^{n}} f(x) d z .
$$

The second equation will be abbreviated

$$
\int_{\mathbb{R}^{m}}\left(\int_{\mathbb{R}^{e}} f(x, y) d x\right) d y=\int_{\mathbb{R}^{n}} f(x, y) d x d y
$$

and the LHS of this equation will often be written

$$
\int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{e}} f(x, y) d x d y \quad \text { or } \quad \int_{\mathbb{R}^{m}} d y \int_{\mathbb{R}^{e}} f(x, y) d x .
$$

Proof. The proof is long, and is broken into 10 steps.
(1) Let J be a special rectangle. Then $J=J_{1} \times J_{2}$, with J_{1} and J_{2} special rectangles in \mathbb{R}^{ℓ} and \mathbb{R}^{m}. Then for any $y \in \mathbb{R}^{m}$,

$$
J_{y}= \begin{cases}J_{1} & \text { if } y \in J_{2} \\ \emptyset & \text { if } y \notin J_{2}\end{cases}
$$

Thus, $\lambda\left(J_{y}\right)=\lambda\left(J_{1}\right) \chi_{J_{2}}(y)$, and so

$$
\begin{aligned}
\int_{\mathbb{R}^{m}} \lambda\left(J_{y}\right) d y & =\lambda\left(J_{1}\right) \lambda\left(J_{2}\right) \\
& =\lambda(J) .
\end{aligned}
$$

(2) Let $G \subset \mathbb{R}^{n}$ be open, and write $G=\cup_{k=1}^{\infty} J_{k}$, with each J_{k} a disjoint rectangle. Thus,

$$
G_{y}=\bigcup_{k=1}^{\infty} J_{k, y}
$$

is a disjoint union, and so $\lambda\left(G_{y}\right)=\sum \lambda\left(J_{k, y}\right)$. Thus,

$$
\begin{aligned}
\int_{\mathbb{R}^{m}} \lambda\left(G_{y}\right) d y & =\sum_{k=1}^{\infty} \int_{\mathbb{R}^{m}} \lambda\left(J_{k, y}\right) d y \\
& =\sum_{k=1}^{\infty} \lambda\left(J_{k}\right) \\
& =\lambda(G)
\end{aligned}
$$

(3) Let $K \subset \mathbb{R}^{n}$ be compact, and choose $G \supset K$ open and bounded. Apply (2) to $G \backslash K$:

$$
\begin{gathered}
\int_{\mathbb{R}^{m}} \lambda\left(G_{y} \backslash K_{y}\right) d y=\lambda(G \backslash K) \\
\int_{\mathbb{R}^{m}} \lambda\left(G_{y}\right) d y-\int_{\mathbb{R}^{m}} \lambda\left(K_{y}\right) d y=\lambda(G)-\lambda(K) .
\end{gathered}
$$

Thus, applying (2) to G gives

$$
\int_{\mathbb{R}^{m}} \lambda\left(K_{y}\right) d y=\lambda(K)
$$

(4) Let $K_{1} \subset K_{2} \subset \cdots$ be compact. Let $B=\cup_{k} K_{j}$. Then for all $y \in \mathbb{R}^{m}$,

$$
B_{y}=\bigcup_{j=1}^{\infty} K_{j, y}
$$

So B_{y} is measurable, $\lambda\left(B_{y}\right)=\lim _{j} \rightarrow \infty \lambda\left(K_{j, y}\right)$ is increasing, so by monotone convergence,

$$
\begin{aligned}
\int_{\mathbb{R}^{m}} \lambda\left(B_{y}\right) d y & =\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{m}} \lambda\left(K_{j, y}\right) d y \\
& =\lim _{j \rightarrow \infty} \lambda\left(K_{j}\right) \quad \text { by }(3) \\
& =\lambda(B) .
\end{aligned}
$$

(5) Let $G_{1} \supset G_{2} \supset \cdots$ be open and bounded. Let $C=\cap_{j} G_{j}$ and let $K \supset G_{1}$. Applying (4),

$$
K \backslash C=\bigcup_{j=1}^{\infty}\left(K \backslash G_{j}\right)
$$

and so

$$
\int_{\mathbb{R}^{m}} \lambda\left(K_{y} \backslash C_{y}\right) d y=\lambda(K \backslash C)
$$

Since

$$
\int_{\mathbb{R}^{m}} \lambda\left(K_{y}\right) d y=\lambda(K)
$$

the result follows for C.
(6) This step is the most important. Let A be bounded and measurable. By the approximation theorem, there exist compact sets K_{j} and bounded open sets G_{j} such that

$$
K_{1} \subset K_{2} \subset \cdots \subset A \subset \cdots \subset G_{2} \subset G_{1}
$$

and

$$
\lim _{j \rightarrow \infty} \lambda\left(K_{j}\right)=\lambda(A)=\lim _{j \rightarrow \infty} \lambda\left(G_{j}\right) .
$$

Let

$$
B=\bigcup_{j=1}^{\infty} K_{j} \quad \text { and } \quad C=\bigcap_{j=1}^{\infty}
$$

Then $B \subset A \subset C$ and $\lambda(B)=\lambda(A)=\lambda(C)$. Thus, by (4) and (5),

$$
\int_{\mathbb{R}^{m}}\left(\lambda\left(C_{y}\right)-\lambda\left(B_{y}\right)\right) d y=0
$$

and so $\lambda\left(C_{y}\right)-\lambda\left(B_{y}\right)=0$ for a.e. $y \in \mathbb{R}^{m}$. This means that $C_{y} \backslash B_{y}$ has measure zero in \mathbb{R}^{ℓ} for a.e. $y \in \mathbb{R}^{m}$, and for these y, $B_{y} \subset A_{y} \subset C_{y} \Rightarrow A_{y}=B_{y} \cup N$, where N is a null set. Hence, A_{y} is measurable for a.e. $y, \lambda\left(A_{y}\right)$ is a measurable function of y, and

$$
\begin{aligned}
\int_{\mathbb{R}^{m}} \lambda\left(A_{y}\right) d y & =\int_{\mathbb{R}^{m}} \lambda\left(B_{y}\right) d y \\
& =\lambda(B)=\lambda(A)
\end{aligned}
$$

(7) Observe that if the theorem is valid for each function $0 \leq f_{1} \leq$ $f_{2} \leq \cdots$, then it is valid for $f=\lim f_{j}$. This is due to monotone convergence, (2) and (4). Since $f_{j, y}$ is measurable for a.e. y, f_{y} is \mathcal{L}-measurable for a.e. y, and thus for a.e. $y \in \mathbb{R}^{m}$,

$$
\begin{aligned}
F(y) & =\int_{\mathbb{R}^{e}} f_{y}(x) d x \\
& =\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{e}} f_{j, y}(x) d x \\
& =\lim _{j \rightarrow \infty} F_{j}(y) .
\end{aligned}
$$

Since this is an increasing limit and F_{j} is measurable, so is F, and by monotone convergence,

$$
\begin{aligned}
\int_{\mathbb{R}^{m}} F(y) d y & =\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{m}} F_{j}(y) d y \\
& =\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{n}} f_{j}(z) d z \\
& =\int_{\mathbb{R}^{n}} f(z) d z
\end{aligned}
$$

(8) Let f_{j} be the characteristic function of the bounded set $A \cap$ $B(0, j)$. Then the theorem is valid for the characteristic function of any measurable set by (6) the observation in (7).
(9) Since non-negative measurable simple functions are (finite) linear combinations of functions in (8), the theorem follows for them.
(10) The theorem follows from the theorem that states that there exists a sequence of simple measurable functions converging to any non-negative measurable function.

Fubini II: Integrable functions.

Theorem 0.2. Assume that $f \in L^{1}\left(\mathbb{R}^{n}\right)$. Then for a.e. $y \in \mathbb{R}^{m}$, the function $f_{y} \in L^{1}\left(\mathbb{R}^{\ell}\right)$, and

$$
F(y)=\int_{\mathbb{R}^{e}} f_{y}(x) d x
$$

exists. Moreover, $F \in L^{1}\left(\mathbb{R}^{m}\right)$, and

$$
\int_{\mathbb{R}^{m}} F(y) d y=\int_{\mathbb{R}^{n}} f(z) d z
$$

Proof. Write $f=f^{+}-f^{-}$and apply Fubini I. Define

$$
G(y)=\int_{\mathbb{R}^{e}} f_{y}^{-} d x, \quad H(y)=\int_{\mathbb{R}^{e}} f_{y}^{+} d x
$$

so that

$$
\int_{\mathbb{R}^{m}} G d y=\int_{\mathbb{R}^{n}} f^{-} d z, \quad \int_{\mathbb{R}^{m}} H d y=\int_{\mathbb{R}^{n}} f^{+} d z
$$

Because the integrals are finite, $G(y)<\infty$ and $H(y)<\infty$ a.e. and thus $f_{y} \in L^{1}\left(\mathbb{R}^{\ell}\right)$. Also, $F(y)=H(y)-G(y)$ a.e., and so $F \in L^{1}\left(\mathbb{R}^{m}\right)$
and

$$
\begin{aligned}
\int_{\mathbb{R}^{m}} F d y & =\int_{\mathbb{R}^{m}} H d y-\int_{\mathbb{R}^{m}} G d y \\
& =\int_{\mathbb{R}^{n}} f^{+} d z-\int_{\mathbb{R}^{n}} f^{-} d z \\
& =\int_{\mathbb{R}^{n}} f d z
\end{aligned}
$$

Example of Fubini's theorem. Let us calculate the integral

$$
\int_{E} y \sin x e^{-x y} d x d y
$$

where $E=(0, \infty) \times(0,1)$. Since the integrand is a a continuous function, it is \mathcal{L}-measurable. We have by integration by parts

$$
\begin{aligned}
F(y) & =\int_{0}^{\infty} y \sin x e^{-x y} d x \\
& =\frac{y}{y^{2}+1} .
\end{aligned}
$$

Thus,

$$
\int_{0}^{1} F(y) d y=\frac{1}{2} \log 2 .
$$

Now, since $|f(x, y)| \leq y e^{-x y}$, we may apply Fubini I to see that

$$
\begin{aligned}
\int_{E}|f(x, y)| d x d y & \leq \int_{E} y e^{-x y} d x d y \\
& =\int_{0}^{1} d y \int_{0}^{\infty} y e^{-x y} d x \\
& =\int_{0}^{1} d y \\
& =1
\end{aligned}
$$

Doing integration with respect to y first yields

$$
\int_{0}^{1} y \sin x e^{-x y} d y=\frac{\sin x}{x}\left(\frac{1-e^{-x}}{x}-e^{-x}\right)
$$

Thus, Fubini's theorem shows that

$$
\int_{0}^{\infty} \frac{\sin x}{x}\left(\frac{1-e^{-x}}{x}-e^{-x}\right) d x=\frac{1}{2} \log 2 .
$$

[^0]: Date: November 4, 2003.

