MEASURE AND INTEGRATION: LECTURE 15

 L^p spaces. Let $0 and let <math>f: X \to \mathbb{C}$ be a measurable function. We define the L^p norm to be

$$\|f\|_p = \left(\int_X |f|^p \ d\mu\right)^{1/p},$$

and the space L^p to be

$$L^p(\mu) = \{ f \colon X \to \mathbb{C} \mid f \text{ is measurable and } \|f\|_p < \infty \}.$$

Observe that $||f||_p = 0$ if and only if f = 0 a.e. Thus, if we make the equivalence relation $f \sim g \iff f = g$ a.e., then $||\cdot||$ makes L^p a normed space (we will define this later).

If μ is the counting measure on a countable set X, then

$$\int_X f \ d\mu = \sum_{x \in X} f(x).$$

Then L^p is usually denoted ℓ^p , the set of sequences s_n such that

$$\left(\sum_{n=1}^{\infty} |s_n|^p\right)^{1/p} < \infty.$$

A function f is essentially bounded if there exists $0 \le M < \infty$ such that $|f(x)| \le M$ for a.e. $x \in X$. The space L^{∞} is defined as

 $L^{\infty}(\mu) = \{ f \colon X \to \mathbb{C} \mid f \text{ essentially bounded} \}$

with the L^{∞} norm

$$||f||_{\infty} = \inf\{M \mid |f(x)| \le M \text{ a.e. } x \in X\}.$$

Proposition 0.1. If $f \in L^{\infty}$, then $|f(x)| \leq ||f||_{\infty}$ a.e.

Proof. By definition of inf, there exists $M_k \to ||f||_{\infty}$ such that $|f(x)| < M_k$ a.e., or, equivalently, there exists N_k with $\mu(N_k) = 0$ such that $|f(x)| \le M_k$ for all $x \in N_k^c$. Let $N = \bigcup_{k=1}^{\infty} N_k$. Then $\mu(N) = 0$. If $x \in N^c = \bigcap_{k=1}^{\infty} (N_k)^c$, then $|f(x)| \le M_k$ since $M_k \to ||f||_{\infty}$. Thus, $|f(x)| \le ||f||_{\infty}$ for all $x \in N^c$.

Date: October 23, 2003.

Theorem 0.2. Let $1 \le p \le \infty$ and 1/p + 1/q = 1. Let $f \in L^p(\mu)$ and $g \in L^q(\mu)$. Then $fg \in L^1(\mu)$ and

$$\begin{aligned} \left\| fg \right\|_{1} &\leq \left\| f \right\|_{p} \left\| g \right\|_{q} \quad i.e., \\ \int \left| fg \right| \ d\mu &\leq \left(\int \left| f \right|^{p} \right)^{1/p} \left(\int \left| g \right|^{q} \right)^{1/q} \end{aligned}$$

Proof. If 1 , this is simply Hölder's inequality. If <math>p = 1, $q = \infty$, then $|f(x)g(x)| \le ||g||_{\infty} |f(x)|$ a.e. Thus,

$$\int |fg| \le ||g|| \int |f|.$$

Theorem 0.3. Let $1 \le p \le \infty$. Let $f, g \in L^p(\mu)$. Then $f + g \in L^p(\mu)$ and $||f + g||_p \le ||f||_p + ||g||_p$.

Proof. If 1 , this is simply Minkowski's inequality. If <math>p = 1, then $\int |f+g| \le \int |f| + \int |g|$ is true. If $p = \infty$, then $|f+g| \le |f| + |g| \Rightarrow ||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.

Normed space and Banach spaces. A normed space is a vector space V together with a function $\|\cdot\|: V \to \mathbb{R}$ such that

- (a) $0 \le ||x|| < \infty$.
- (b) $||x|| = 0 \iff x = 0.$
- (c) $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{C}$.
- (d) $||x + y|| \le ||x|| + ||y||.$

For example, $L^{p}(\mu)$ is a normed space if two functions f, g are considered equal if and only if f = g a.e. Also, \mathbb{R}^{n} with the Euclidean norm is a normed space.

A metric space is a set M together with a function $d: M \times M \to \mathbb{R}$ such that

(a) $0 \le d(x, y) < \infty$. (b) d(x, x) = 0. (c) d(x, y) > 0 if $x \ne y$. (d) d(x, y) = d(y, x). (e) $d(x, y) \le d(x, z) + d(z, y)$.

A normed space is a metric space with metric d(f,g) = ||f - g||.

Recall that $x_i \to x \in M$ if $\lim_{n\to\infty} d(x_n, x) = 0$. A sequence $\{x_i\}$ is Cauchy if for every $\epsilon > 0$ there exists $N(\epsilon)$ such that $d(x_j, x_k) \leq \epsilon$ for all $j, k \geq N(\epsilon)$.

Claim: if $x_n \to x$, then it is Cauchy. We know that $\lim_{n\to\infty} d(x_n, x) = 0$, so given $\epsilon > 0$, there exists N such that $d(x_k, x) < \epsilon/2$ for all k > N. for j, k > N, $d(x_k, x_j) \le d(x_j, x) + d(x, x_k) < \epsilon$.

However, a Cauchy sequence does not have to converge. For example, consider the space $\mathbb{R} \setminus \{0\}$ (the punctured real line) with the absolute value norm. The sequence $x_n = 1/n$ is Cauchy but it does not converge to a point in the space.

A metric space is called *complete* if every Cauchy sequence converges. By the Bolzano-Weierstrass theorem, \mathbb{R}^n is complete. (Every Cauchy sequence is bounded, so it has a convergent subsequence and must converge.)

A normed space $(V, \|\cdot\|)$ that is complete under the induced metric $d(f, g) = \|f - g\|$ is called a *Banach space*.

Riesz-Fischer theorem.

Lemma 0.4. If $\{f_n\}$ is Cauchy, then there exists a subsequence f_{n_k} such that $d(f_{n_{k+1}}, f_{n_k}) \leq 2^{-k}$.

Theorem 0.5. For $1 \le p \le \infty$ and for any measure space (X, \mathcal{M}, μ) , the space $L^p(\mu)$ is a Banach space.

Proof. Let $1 \leq p < \infty$ and let $\{f_n\} \in L^p(\mu)$ be a Cauchy sequence. By the lemma, there exists a subsequence n_k with $n_1 < n_2 < \cdots$ such that $\|f_{n_{k+1}}, f_{n_k}\|_p < 2^{-k}$. Let $g_k = \sum_{i=1}^k \|f_{n_{i+1}} - f_{n_i}\|_p$ and $g = \lim_{k \to \infty} g_k = \sum_{i=1}^\infty \|f_{n_{i+1}} - f_{n_i}\|_p$. By Minkowski's inequality,

$$||g_k||_p \le \sum_{i=1}^k ||f_{n_{i+1}} - f_{n_i}||_p < \sum_{i=1}^k 2^{-i} < 1.$$

Consider g_k^p . By Fatou's lemma,

$$\int \liminf g_k^p \le \liminf \int g_k^p,$$

and so

$$\int g^p \le 1 \Rightarrow g(x) < \infty \text{ a.e.}$$

Thus, the series

$$f_{n_1}(x) + \sum_{i=1}^{\infty} (f_{n_{i+1}}(x) - f_{n_i}(x))$$

converges absolutely a.e. Define

$$f(x) = \begin{cases} f_{n_1}(x) + \sum_{i=1}^{\infty} (f_{n_{i+1}}(x) - f_{n_i}(x)) & \text{where it converges;} \\ 0 & \text{otherwise.} \end{cases}$$

The partial sum

$$f_{n_1}(x) + \sum_{i=1}^{k-1} (f_{n_{i+1}}(x) - f_{n_i}(x)) = f_{n_k}(x),$$

and so

$$\lim_{k \to \infty} f_{n_k}(x) = f(x) \text{ a.e.}$$

Thus we have shown that every Cauchy sequence has a convergent subsequence, and we NTS that $f_{n_k} \to f$ in L^p .

Given $\epsilon > 0$, there exists N such that $||f_n - f_m||_p < \epsilon$ for all n, m > N. We have that

$$\left|f - f_{m}\right|^{p} = \liminf \left|f_{n_{k}} - f_{m}\right|^{p}$$

since $f_{n_k} \to f$ a.e. Thus,

$$\int_{X} |f - f_{m}|^{p} = \int_{X} \liminf |f_{n_{k}} - f_{m}|^{p}$$
$$\leq \liminf \int_{X} |f_{n_{k}} - f_{m}|^{p}$$
$$< \epsilon^{p}.$$

This implies that $||f - f_m||_p < \epsilon$, and thus

$$||f||_p = ||f - f_m + f + m||_p \le ||f - f_m||_p + ||f_m||_p < \infty.$$

We conclude that $f \in L^p$ and $||f - f_m||_p \to 0$ as $m \to \infty$.

Now let $p = \infty$ and let $\{f_n\}$ be a Cauchy sequence in $L^{\infty}(\mu)$. Let

$$A_k = \{x \mid |f_k(x)| > ||f_k||_{\infty}\}$$

and

$$B_{m,n} = \{x \mid |f_n(x) - f_m(x)| > ||f_n - f_m||_{\infty}\}.$$

These sets all have measure zero. Let

$$N = \left(\bigcup_{k=1}^{\infty} A_k\right) \cup \left(\bigcup_{n,m=1}^{\infty} B_{m,n}\right)$$

Then N has measure zero.

For $x \in N^c$, f_n is a Cauchy sequence of complex numbers. Thus, $f_n \to f$ by completeness of \mathbb{C} uniformly. Since $||f_k||_{\infty}$ is bounded, $|f_k(x)| < M$ for all $x \in N^c$. Thus, f(x) < M for all $x \in N^c$. Letting f = 0 on N, we have $||f||_{\infty} < \infty$ and $||f_n - f||_{\infty} \to 0$ as $n \to \infty$. \Box

Theorem 0.6. Let $1 \le p \le \infty$ and $\{f_n\}$ be a Cauchy sequence in $L^p(\mu)$ such that $||f - f_n||_p \to 0$. Then f_n has a subsequence which converges pointwise almost everywhere to f(x).

4

Proof. Since $||f - f_n||_p \to 0$, $f_n \to f$ in measure. By the previous theorem, there exists a subsequence which converges a.e.

Examples in \mathbb{R} .

(1) A sequence in L^p can converge a.e. without converging in L^p . Let $f_k = k^2 \chi_{(0,1/k)}$. Then

$$||f_k||_p = \left(\int_{(0,1/k)} k^{2p}\right)^{1/p} = k^2 (1/k)^{1/p} = k^{2-1/p} < \infty.$$

Thus $f_k \in L^p$ and $f_k \to 0$ on \mathbb{R} , but $||f_k||_p \to \infty$.

- (2) A sequence can converge in L^p without converging a.e. (HW problem).
- (3) A sequence can belong to $L^{p_1} \cap L^{p_2}$ and converge in L^{p_1} without converging in L^{p_2} . Let $f_k = k^{-1}\chi_{(k,2k)}$. Then $f_k \to 0$ pointwise and $||f_k||_p = k^{-1}k^{1/p} = k^{1/p-1}$. If p > 1, then $||f_k||_p \to 0$ as $k \to \infty$, so $f_k \to 0$ in L^p norm. But $||f_k||_1 = 1$ so $f_k \not\to 0$ in L^1 .