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MEASURE AND INTEGRATION: LECTURE 10


Integration as a linear functional. A complex vector space is a set 
V with two operations: addition (+) and scalar multiplication (·). 

Addition: For all x, y, z ∈ V , 

• x + y = y + x. 
• x + (y + z) = (x + y) + z. 
• ∃ unique vector 0 such that x + 0 = x for all x. 
• ∃ (−x) such that x + (−x) = 0. 

Multiplication: For all α, β ∈ C, x ∈ V ,


x = x
• 1 · 
x) = (αβ) · x• α · (β · 

• α · (x + y) = α · x + α · y 
• (α + β) · x = α · x + β · x. 

A linear transformation is a map Λ : V1 → V2 from a vector space V1 

to a vector space V2 such that Λ(αxβ y) = αΛx + βΛy. If V2 = C (or 
R), then Λ is a linear functional. 

Let (X, M, µ) be a measure space. Then 

L1(µ) = f : X → C | f dµ < ∞, f measurable .| |
X 

Note that 
X f dµ is a linear functional. Let g : X C be 

X : f �→ � →
a bounded measurable function. Then f �→ 

X fg dµ is also a linear 
functional. 

Special case: X = Rn . Let 

C(Rn , R) = {f : Rn → R f continuous}.| 
The Riemann integral is a positive linear functional since f ≥ 0 ⇒
Λf ≥ 0, where Λ is the Riemann integral. 

Riesz theorem. Let X be a topological space and C(X) be the set 
of functions from X to R. If Λ : C R is a positive linear functional, →
then there exists a σalgebra M and unique measure µ on X such that 
Λf = 

X f dµ. Conversely, given a measure, then Λ is a positive linear 
functional. 
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2 MEASURE AND INTEGRATION: LECTURE 10 

Topology. Let X be a topological space. The space X is Hausdorff 
if for all p, q ∈ X such that p = q there exist neighborhoods U and 
V such that p ∈ U , q ∈ V , and U ∩ V = . The space X is locally ∅
compact if for all p ∈ X there exists a neighborhood U of p such that 
U (the closure of U) is compact. (Infinite dimensional spaces are not 
locally compact.) 

Let f : X → R. If {x f(x) > α} is open for all α, then f is lower|
semicontinuous. If {x f(x) < α} is open for all α, then f is upper |
semicontinuous. Examples: χU for U open is lower semicontinuous and 
χF for F closed is upper semicontinuous. 

The support of a function f is defined as the set supp f = {x | f(x) = 
0}. An important set is the set of all functions with compact support: 

Cc(X) = {f : X supp f is compact}.→ C | 
Since supp fg ⊂ (supp f) ∪ (supp g), Cc(X) is a vector space. 

Notation: (1) K � f means that K is compact, f ∈ Cc(X), 0 ≤
f(x) ≤ 1 for all x ∈ X, and f(x) = 1 for all x ∈ K. (2) f � V 
means that V is open, f ∈ Cc(X), 0 ≤ f(x) ≤ 1 for all x ∈ X, and 
supp f ⊂ V . 

Urysohn’s lemma. Let X be a locally compact Hausdorff space, K ⊂
V , K compact, U open. Then there exists f ∈ Cc(X) such that K �
f � V . 

A corollary to Urysohn’s lemma is the existence of partitions of unity. 
Let V1, . . . , Vn be open subsets of X (a locally compact Hausdorff space) 
and K compact such that K ⊂ V1 ∪· · ·∪Vn. Then there exists functions 
hi � Vi such that h1(x) + · · ·+ hn(x) = 1. 

Riesz representation theorem (for positive linear functionals). 

Theorem 0.1. Let X be a locally compact Hausdorff space. Let 

Λ : Cc(X) → C 

be a positive linear functional (positive when restricted to f : X →
R≥0). Then there exists a σalgebra M in X which contains all the 
Borel sets and a unique positive measure µ on M such that 

(a) Λf = 
X f dµ for all f ∈ Cc(X). 

(b) µ(K) < ∞ for all compact sets K ⊂ X. 
(c) If E ∈ M, then 

µ(E) = inf{µ(V ) E ⊂ V, V open}.|
(d) If E is open or E ∈ M with µ(E) < ∞, then 

µ(E) = sup{µ(K) K ⊂ E, K compact}.| 
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3 MEASURE AND INTEGRATION: LECTURE 10 

(e)	 If E ∈M, A ⊂ E, and µ(E) = 0, then A ∈M. 

Proof. (Outline) We must show uniqueness. 
By (d), the measure of open sets determined by measure of compact 

sets, and so by (c) the measure of any set in M is determined by the 
measure of compact sets. Assume we have µ1 and µ2 which satisfy 
the conditions of the theorem, and let K be compact. For any � > 0, 
choose U open such that K ⊂ U and µ2(U) < µ2(K) + �. By Urysohn’s 
lemma, there exists f ∈ Cc(X) such that K � f � V . Then 

µ1(K) = χK dµ1 ≤ f dµ1 = Λf 
X X 

and � � 
Λf = f dµ2 ≤ χV dµ2 = µ2(V ) < µ2(K) + �. 

X X 

Since this holds for any � > 0, µ1(K) ≤ µ2(K), and by reversing the 
roles of µ1 and µ2, we have µ1(K) = µ2(K). 

Now let V ⊂ X be open and define µ(V ) = sup{Λf . For | f	� V }
E ⊂ X, define µ(E) = inf{µ(V ) E ⊂ V, V open} = λ∗(E). (λ∗ will|
not be countably additive on all sets, only on the σalgebra.) Let MF 

be the set of E ⊂ X such that 

µ(E) = sup{µ(K) K ⊂ E, K compact} and µ∗(E) < ∞.|
Finally, M is simply E ⊂ X such that E ∩ K ∈ MF for all K ∈ 
MF . � 

Properties. 
(1)	 µ∗ is countably subadditive: µ(∪Ei) ≤ �µ(Ei). 
(2) If Ei ∈MF are disjoint, then µ(∪Ei) = µ(Ei). 
(3)	 MF contains all open sets. 
(4) (Approximation) If E ∈ MF and � > 0, then there exist K ⊂

E ⊂ V , K compact, V open, such that µ(V \K) < �. 
(5)	M is a σalgebra that contains the Borel σalgebra B, and µ is 

countably additive on M. 
(6) If f ∈ Cc(X), then Λf = 

X f dµ. 

Proof. Just NTS that Λf ≤ 
X f dµ for f real in Cc(X). Then 

−Λf = Λ(−f) ≤ (−f)dµ = f dµ −	
XX 

f dµ. ⇒ Λf ≥ 
X 

The complex case follows from the real case by complex linear
ity. Let f ∈ Cc(X) and supp f = K compact. The continuous 
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image of compact sets is compact ⇒ f(K) ⊂ [a, b]. Choose 
� > 0 and choose yi (i = 0, 1, . . . , n) such that yi − yi=1 < � and 
y0 < a < y1 · · < yn = b (i.e., partition the range by �). Let ·

Ei = {x yi=1 < f(x) ≤ yi} ∩K.|
nSince f is continuous, f is Borel measurable and ∪i=1Ei = K 

is a disjoint union. choose open sets Vi ⊃ Ei such that µ(Vi) < 
µ(Ei) + �/n for each i = 1, . . . , n and f(x) < yi + � for all x ∈ Vi. 
(The latter can be done by continuity of f .) � 

By partition of unity, there exists hi � Vi such that hi = 1 � i 
on K. Write f = i hif . Then 

µ(K) ≤ Λ( hi) = Λhi, 
i i 

hif ≤ (yi + �)hi, and yi − � < f(x) ∀x ∈ Ei. 

Thus, 
n n

Λf = Λ(hif) ≤ (yi + �)Λhi 

i=1 i=1

n n


= ( a + yi + �)Λhi − a Λhi| |
i=1 

| |
i=1


n


( a + yi + �)(µ(Ei) + �/n) − a µ(K)≤ | | | |
i=1

n


= (|a|+ �)(µ(Ei)) 
i=1 

n n

= |a|µ(K) + (|a|+ yi + �)�/n + yiµ(Ei) 
i=1 i=1 

n n

= (yi − �)µ(Ei) + 2�µ(K) + �/n (|a|+ yi + �) 
i=1 i=1 

f dµ + �(constant).≤ 
X 

Definitions. A measure space (X,M, µ) is called a Borel measure if 
. If µ(E) = inf{µ(V ) E ⊂ V, V open} for all E ∈ M,B ⊂ M |

then µ is called outer regular. Similarly, if µ(E) = sup{µ(K) | K ⊂
E, K compact} for all E ∈ M, then µ is called inner regular. If µ is 
both inner and outer regular, it is said to be regular. 
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A space X is σcompact if X = ∪∞ where each Ki is compact. i=1Ki 

It is σfinite if X = ∪∞ Ei where µ(Ei) < ∞ for each i.i=1

Addition to Riesz. If X is locally compact, σcompact, Hausdorff 
space then we also have: 

(1) If E ∈ M and � > 0, then there exists F ⊂ E ⊂ V , F closed, 
V open, such that µ(V \ F ) < �. 

(2) For all E ∈M there exists A ⊂ E ⊂ B such that A is Fσ , B is 
Gδ , and µ(B \ A) = 0. 

Application. Let X = Rk , Λ : Cc(X) → R given by Λf = f , the 
X 

Riemann integral. Then Lebesgue measure is what you get from the 
Riesz theorem. 


