MEASURE AND INTEGRATION: LECTURE 10

Integration as a linear functional. A complex vector space is a set V with two operations: addition (+) and scalar multiplication (\cdot) .

Addition: For all $x, y, z \in V$,

- x + y = y + x.
- x + (y + z) = (x + y) + z.
- \exists unique vector 0 such that x + 0 = x for all x.

• $\exists (-x)$ such that x + (-x) = 0.

Multiplication: For all $\alpha, \beta \in \mathbb{C}, x \in V$,

- $1 \cdot x = x$
- $\alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x$
- $\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$
- $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x.$

A linear transformation is a map $\Lambda: V_1 \to V_2$ from a vector space V_1 to a vector space V_2 such that $\Lambda(\alpha x_\beta y) = \alpha \Lambda x + \beta \Lambda y$. If $V_2 = \mathbb{C}$ (or \mathbb{R}), then Λ is a *linear functional*.

Let (X, \mathcal{M}, μ) be a measure space. Then

$$L^{1}(\mu) = \left\{ f \colon X \to \mathbb{C} \mid \int_{X} |f| \, d\mu < \infty, f \text{ measurable} \right\}.$$

Note that $\int_X : f \mapsto \int_X f d\mu$ is a linear functional. Let $g : X \to \mathbb{C}$ be a bounded measurable function. Then $f \mapsto \int_X fg d\mu$ is also a linear functional.

Special case: $X = \mathbb{R}^n$. Let

$$C(\mathbb{R}^n, \mathbb{R}) = \{ f \colon \mathbb{R}^n \to \mathbb{R} \mid f \text{ continuous} \}.$$

The Riemann integral is a *positive* linear functional since $f \ge 0 \Rightarrow \Lambda f \ge 0$, where Λ is the Riemann integral.

Riesz theorem. Let X be a topological space and C(X) be the set of functions from X to \mathbb{R} . If $\Lambda: C \to \mathbb{R}$ is a positive linear functional, then there exists a σ -algebra \mathcal{M} and unique measure μ on X such that $\Lambda f = \int_X f \ d\mu$. Conversely, given a measure, then Λ is a positive linear functional.

Date: October 7, 2003.

Topology. Let X be a topological space. The space X is Hausdorff if for all $p, q \in X$ such that $p \neq q$ there exist neighborhoods U and V such that $p \in U$, $q \in V$, and $U \cap V = \emptyset$. The space X is locally compact if for all $p \in X$ there exists a neighborhood U of p such that \overline{U} (the closure of U) is compact. (Infinite dimensional spaces are not locally compact.)

Let $f: X \to \mathbb{R}$. If $\{x \mid f(x) > \alpha\}$ is open for all α , then f is *lower* semicontinuous. If $\{x \mid f(x) < \alpha\}$ is open for all α , then f is upper semicontinuous. Examples: χ_U for U open is lower semicontinuous and χ_F for F closed is upper semicontinuous.

The support of a function f is defined as the set supp $f = \{x \mid f(x) \neq 0\}$. An important set is the set of all functions with compact support:

$$C_c(X) = \{ f \colon X \to \mathbb{C} \mid \text{supp } f \text{ is compact} \}.$$

Since supp $f_g \subset (\text{supp } f) \cup (\text{supp } g), C_c(X)$ is a vector space.

Notation: (1) $K \prec f$ means that K is compact, $f \in \mathbb{C}_c(X)$, $0 \leq f(x) \leq 1$ for all $x \in X$, and f(x) = 1 for all $x \in K$. (2) $f \prec V$ means that V is open, $f \in C_c(X)$, $0 \leq f(x) \leq 1$ for all $x \in X$, and supp $f \subset V$.

Urysohn's lemma. Let X be a locally compact Hausdorff space, $K \subset V$, K compact, U open. Then there exists $f \in C_c(X)$ such that $K \prec f \prec V$.

A corollary to Urysohn's lemma is the existence of partitions of unity. Let V_1, \ldots, V_n be open subsets of X (a locally compact Hausdorff space) and K compact such that $K \subset V_1 \cup \cdots \cup V_n$. Then there exists functions $h_i \prec V_i$ such that $h_1(x) + \cdots + h_n(x) = 1$.

Riesz representation theorem (for positive linear functionals).

Theorem 0.1. Let X be a locally compact Hausdorff space. Let

$$\Lambda \colon C_c(X) \to \mathbb{C}$$

be a positive linear functional (positive when restricted to $f: X \to \mathbb{R}_{\geq 0}$). Then there exists a σ -algebra \mathcal{M} in X which contains all the Borel sets and a unique positive measure μ on \mathcal{M} such that

- (a) $\Lambda f = \int_X f d\mu$ for all $f \in C_c(X)$.
- (b) $\mu(K) < \infty$ for all compact sets $K \subset X$.

(c) If $E \in \mathcal{M}$, then

$$\mu(E) = \inf\{\mu(V) \mid E \subset V, V \text{ open}\}.$$

(d) If E is open or $E \in \mathcal{M}$ with $\mu(E) < \infty$, then

$$\mu(E) = \sup\{\mu(K) \mid K \subset E, K \text{ compact}\}.$$

(e) If $E \in \mathcal{M}$, $A \subset E$, and $\mu(E) = 0$, then $A \in \mathcal{M}$.

Proof. (Outline) We must show uniqueness.

By (d), the measure of open sets determined by measure of compact sets, and so by (c) the measure of any set in \mathcal{M} is determined by the measure of compact sets. Assume we have μ_1 and μ_2 which satisfy the conditions of the theorem, and let K be compact. For any $\epsilon > 0$, choose U open such that $K \subset U$ and $\mu_2(U) < \mu_2(K) + \epsilon$. By Urysohn's lemma, there exists $f \in C_c(X)$ such that $K \prec f \prec V$. Then

$$\mu_1(K) = \int_X \chi_K \ d\mu_1 \le \int_X f \ d\mu_1 = \Lambda f$$

and

$$\Lambda f = \int_X f \ d\mu_2 \le \int_X \chi_V \ d\mu_2 = \mu_2(V) < \mu_2(K) + \epsilon.$$

Since this holds for any $\epsilon > 0$, $\mu_1(K) \le \mu_2(K)$, and by reversing the roles of μ_1 and μ_2 , we have $\mu_1(K) = \mu_2(K)$.

Now let $V \subset X$ be open and define $\mu(V) = \sup\{\Lambda f \mid f \prec V\}$. For $E \subset X$, define $\mu(E) = \inf\{\mu(V) \mid E \subset V, V \text{ open}\} = \lambda^*(E)$. (λ^* will not be countably additive on all sets, only on the σ -algebra.) Let \mathcal{M}_F be the set of $E \subset X$ such that

 $\mu(E) = \sup\{\mu(K) \mid K \subset E, K \text{ compact}\} \text{ and } \mu^*(E) < \infty.$

Finally, \mathcal{M} is simply $E \subset X$ such that $E \cap K \in \mathcal{M}_F$ for all $K \in \mathcal{M}_F$.

Properties.

- (1) μ^* is countably subadditive: $\mu(\cup E_i) \leq \sum \mu(E_i)$.
- (2) If $E_i \in \mathcal{M}_F$ are disjoint, then $\mu(\cup E_i) = \sum \mu(E_i)$.
- (3) M_F contains all open sets.
- (4) (Approximation) If $E \in \mathcal{M}_F$ and $\epsilon > 0$, then there exist $K \subset E \subset V$, K compact, V open, such that $\mu(V \setminus K) < \epsilon$.
- (5) \mathcal{M} is a σ -algebra that contains the Borel σ -algebra \mathcal{B} , and μ is countably additive on \mathcal{M} .
- (6) If $f \in C_c(X)$, then $\Lambda f = \int_X f \ d\mu$.

Proof. Just NTS that $\Lambda f \leq \int_X f \ d\mu$ for f real in $C_c(X)$. Then

$$\begin{split} -\Lambda f &= \Lambda(-f) \leq \int_X (-f) d\mu = -\int_X f \ d\mu \\ &\Rightarrow \Lambda f \geq \int_X f \ d\mu. \end{split}$$

The complex case follows from the real case by complex linearity. Let $f \in C_c(X)$ and supp f = K compact. The continuous image of compact sets is compact $\Rightarrow f(K) \subset [a, b]$. Choose $\epsilon > 0$ and choose y_i (i = 0, 1, ..., n) such that $y_i - y_{i=1} < \epsilon$ and $y_0 < a < y_1 \cdots < y_n = b$ (i.e., partition the range by ϵ). Let

$$E_i = \{x \mid y_{i=1} < f(x) \le y_i\} \cap K.$$

Since f is continuous, f is Borel measurable and $\bigcup_{i=1}^{n} E_i = K$ is a disjoint union. choose open sets $V_i \supset E_i$ such that $\mu(V_i) < \mu(E_i) + \epsilon/n$ for each i = 1, ..., n and $f(x) < y_i + \epsilon$ for all $x \in V_i$. (The latter can be done by continuity of f.)

By partition of unity, there exists $h_i \prec V_i$ such that $\sum_i h_i = 1$ on K. Write $f = \sum_i h_i f$. Then

$$\mu(K) \le \Lambda(\sum_{i} h_i) = \sum_{i} \Lambda h_i,$$

 $h_i f \leq (y_i + \epsilon) h_i$, and $y_i - \epsilon < f(x) \ \forall x \in E_i$.

Thus,

$$\begin{split} \Lambda f &= \sum_{i=1}^{n} \Lambda(h_i f) \leq \sum_{i=1}^{n} (y_i + \epsilon) \Lambda h_i \\ &= \sum_{i=1}^{n} (|a| + y_i + \epsilon) \Lambda h_i - |a| \sum_{i=1}^{n} \Lambda h_i \\ &\leq \sum_{i=1}^{n} (|a| + y_i + \epsilon) (\mu(E_i) + \epsilon/n) - |a| \mu(K) \\ &= \sum_{i=1}^{n} (|a| + \epsilon) (\mu(E_i)) \\ &= |a| \mu(K) + \sum_{i=1}^{n} (|a| + y_i + \epsilon) \epsilon/n + \sum_{i=1}^{n} y_i \mu(E_i) \\ &= \sum_{i=1}^{n} (y_i - \epsilon) \mu(E_i) + 2\epsilon \mu(K) + \epsilon/n \sum_{i=1}^{n} (|a| + y_i + \epsilon) \\ &\leq \int_X f \ d\mu + \epsilon (\text{constant}). \end{split}$$

Definitions. A measure space (X, \mathcal{M}, μ) is called a *Borel measure* if $\mathcal{B} \subset \mathcal{M}$. If $\mu(E) = \inf\{\mu(V) \mid E \subset V, V \text{ open}\}$ for all $E \in \mathcal{M}$, then μ is called *outer regular*. Similarly, if $\mu(E) = \sup\{\mu(K) \mid K \subset E, K \text{ compact}\}$ for all $E \in \mathcal{M}$, then μ is called *inner regular*. If μ is both inner and outer regular, it is said to be *regular*.

A space X is σ -compact if $X = \bigcup_{i=1}^{\infty} K_i$ where each K_i is compact. It is σ -finite if $X = \bigcup_{i=1}^{\infty} E_i$ where $\mu(E_i) < \infty$ for each *i*.

Addition to Riesz. If X is locally compact, σ -compact, Hausdorff space then we also have:

- (1) If $E \in \mathcal{M}$ and $\epsilon > 0$, then there exists $F \subset E \subset V$, F closed, V open, such that $\mu(V \setminus F) < \epsilon$.
- (2) For all $E \in \mathcal{M}$ there exists $A \subset E \subset B$ such that A is F_{σ} , B is G_{δ} , and $\mu(B \setminus A) = 0$.

Application. Let $X = \mathbb{R}^k$, $\Lambda: C_c(X) \to \mathbb{R}$ given by $\Lambda f = \int_X f$, the Riemann integral. Then Lebesgue measure is what you get from the Riesz theorem.