Lecture 36

Let G be an n-torus, and $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{Z}_{G}^{*}$. Define a Hamiltonian action τ of G on \mathbb{C}^{d} as follows. First we have

$$
L: \mathbb{R}^{d} \rightarrow \mathfrak{g}^{*} \quad L(t)=\sum t_{i} \alpha_{i}
$$

and

$$
\gamma: \mathbb{C}^{d} \rightarrow \mathbb{R}^{d} \quad \gamma(z)=\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{d}\right|^{2}\right)
$$

then $\Phi=L \circ \gamma$ is the moment map of τ. As before, we're interested in the regular values of Φ.
Define $\Delta_{a}=L^{-1}(a) \cap \mathbb{R}_{+}^{d}$ a convex polytope.
Theorem (1). a is a regular value if Δ_{a} is a simple n-dimensional.
For a regular call $Z_{a}=\Phi^{-1}(a)$. Assume G acts freely on Z_{a}. we have $M_{a}=Z_{a} / G$.

$\psi: M_{a} \rightarrow \mathbb{R}^{d}$ and $\psi \circ \pi=\gamma \circ i$.
$Z_{a}=\gamma^{-1}\left(\Delta_{a}\right)$ implies that $\psi\left(M_{a}\right)=\Delta_{a}$.
Definition. Δ_{a} is called the moment polytope
For $\xi \in \mathbb{R}^{d}$, let $f=\langle\psi, \xi\rangle$ and $\pi^{*} f=i^{*} f_{0}$ where

$$
f_{0}(z)=\sum_{i=1}^{d} \xi_{j}\left|z_{j}\right|^{2}
$$

Theorem (2). Suppose that for all adjacent v, v^{\prime} of Δ_{a} we have $\left\langle v-v^{\prime}, \xi\right\rangle \neq 0$. Then
(a) f is Morse
(b) ψ maps $\operatorname{Crit}(f)$ bijectively onto $\operatorname{Vert}\left(\Delta_{a}\right)$.
(c) For $q \in \operatorname{Crit}(f) \operatorname{ind}_{q}=\operatorname{ind}_{\xi} v$ where $v=\psi(a)$ and the index ind $d_{v} \xi$ is given by

$$
i n d_{v} x i=\left\{v_{k} \mid\left\langle v_{k}-v, \xi\right\rangle<0\right\}
$$

where the v_{k} 's are vertices adjacent to v.
Recall:
$I \subseteq\{1, \ldots, d\}$ then $t \in \mathbb{R}_{I}^{d}$ if and only if $t_{i} \neq 0$ if and only if $i \in I$. For $\Delta=\Delta_{a}$

$$
\mathcal{I}_{\Delta}=\left\{I, \mathbb{R}_{I}^{d} \cap \Delta \neq \emptyset\right\}
$$

For $I \in \mathcal{I}_{\Delta}, \Delta_{I}=\mathbb{R}_{I}^{d} \cap \Delta=$ faces of the polytope Δ. Recall also that there is a partial ordering $I_{1} \leq I_{2}$ if and only if $I_{1} \subseteq I_{2}$.

For I minimal $\Delta_{I}=\left\{v_{I}\right\}$
Theorem. a is a regular value if and only if for every vertex v_{I} of $\Delta_{a}, \alpha_{i}, i \in I$ form a basis of \mathfrak{g}^{*}.
Let $v_{I} \in \operatorname{Vert}\left(\Delta_{a}\right)$. Relabel $I=(1,2, \ldots, n)$ so that $\alpha_{1}, \ldots, \alpha_{n}$ are a basis for $\mathfrak{g}^{*}, a=\sum_{i=1}^{n} a_{i} \alpha_{i}, L\left(v_{I}\right)=$ a. $v_{I}=\left(a_{1}, \ldots, a_{n}, 0, \ldots, 0\right)$ and for $k>n$,

$$
\alpha_{k}=\sum a_{k, i} \alpha_{i}
$$

Rewrite

$$
L(t)=\sum_{i=1}^{n}\left(t_{i}-\sum_{k>n} a_{k, i} t_{k}\right) \alpha_{i}=\sum a_{i} \alpha_{i}=a
$$

From this we conclude that Δ_{a} is defined by

$$
(I)\left\{\begin{array}{l}
t_{i}=a_{i}=\sum a_{k, i} t_{k} \\
t_{1}, \ldots, t_{d} \geq 0
\end{array}\right.
$$

We see immediately tat Δ_{a} is m-dimensional, $m=d-n$. The edges of Δ_{a} at v_{I} lie along the rays $v_{I}+s e_{k}$, $k=n+1, \ldots, d$ for $s \geq 0$.

Exercise Check that $e_{k}=\left(-a_{k, 1}, \ldots, a_{k, n}, 0, \ldots, 1, \ldots, 0\right)$ where the 1 is in the k th slot.
The conclusion is that Δ_{a} is simple at v_{I} so Δ_{a} is simple.
Let $v=v_{I}$ be a vertex of Δ_{a}. Write

$$
\mathcal{O}_{v}=\left\{t \in \Delta_{a}, t_{i}>0 \text { if } i \in\right\}=\bigcup J \geq I \Delta_{I}
$$

Consider $\gamma^{-1}\left(\mathcal{O}_{v}\right)$. These are open G-invariant sets in Z_{a}
Take $\mathcal{U}_{v}=\pi\left(\gamma^{-1}\left(\mathcal{O}_{v}\right)\right)$ an open cover of M_{a}. Let $f: M_{a} \rightarrow \mathbb{R}$. What does f look like on $f \mid \mathcal{u}_{v}$. Take $I=(1, \ldots, n)$ by relabeling. Then

$$
a=\sum_{i=1}^{n} a_{i} \alpha_{i} \quad v_{I}=\left(a_{1}, \ldots, a_{n}, 0, \ldots, 0\right)
$$

then

$$
z \in \gamma^{-1}\left(v_{I}\right) \Longleftrightarrow \begin{cases}\left|z_{i}\right|^{2}=a_{i} & i=1, \ldots, n \\ z_{k}=0 & k>n\end{cases}
$$

Proposition. $\gamma^{-1}\left(v_{I}\right)$ is a single G-orbit.
Proof. $\operatorname{dim} \gamma^{-1}(v)=n, \operatorname{dim} G=n$ and G acts freely on $\gamma^{-1}(v)$.
More generally, $z \in Z_{a}$ if and only if $\gamma(z) \in \Delta_{a}$. Hence by (I) \mathcal{O}_{v} is defined by

$$
\left|z_{i}\right|^{2}=a_{i}-\sum a_{k, i}\left|z_{k}\right|^{2}
$$

and $z_{i} \neq 0, i=1, \ldots, n$.
Take $f_{0}=\sum \xi_{j}\left|z_{j}\right|^{2}$ then $\left(^{*}\right)$

$$
\begin{aligned}
& \quad i^{*} f_{0}=c+\sum_{k>n}\left(\xi_{k}-\sum a_{k, i} \xi_{i}\right)\left|z_{k}\right|^{2} \\
& =c+\sum_{k>n}\left\langle e_{k}, \xi\right\rangle\left|z_{k}\right|^{2}=\pi^{*} f
\end{aligned}
$$

where e_{k} is defined as before.
Proof of Theorem 2. From (*) the only critical point of f on \mathcal{U}_{v} is $a=\pi\left(\gamma^{-1}(v)\right)$.(Recall $\gamma^{-1}(v)$ is a single G-orbit).

Moreover $\psi(a)=v_{I}$. Finally if $p \in \gamma^{-1}(v)$, then

$$
(d \pi)_{p}^{*}\left(d^{2} f_{a}\right)=\sum_{k>n}\left\langle e_{k}, \xi\right\rangle\left|z_{k}\right|^{2}=\sum_{k>n}\left\langle e_{k}, \xi\right\rangle\left(x_{k}^{2}+y_{k}^{2}\right)
$$

It follows that $\left(d^{2} f_{a}\right)$ is (....), and the index is $2 \operatorname{ind}_{\xi} v$.

Also a consequence

$$
H^{2 k+1}\left(M_{a}\right)=0
$$

so

$$
b_{k}=\operatorname{dim} H^{2 k}\left(M_{a}\right)=\#\left\{\operatorname{Vert}\left(\Delta_{a}\right), \operatorname{ind}_{\xi} v=k\right\}
$$

and $b_{k}=\#\left\{\operatorname{ind}_{x} i v=v\right\}$ doesn't depend on ξ. If f_{k} is the number of k-dimensional faces of Δ_{a} for $k=0, \ldots, m$ then

$$
f_{m-k}=\binom{m}{k} b_{0}+\binom{m-1}{k-1} b_{1}+\cdots+b_{k}
$$

Exercise Prove this.
Let Δ be a simple m-dimensional convex polytope and f_{k} be the number of k-dimensional faces of Δ. Define b_{0}, \ldots, b_{n} by the solutions to the equations

$$
f_{m-k}=\binom{m}{k} b_{0}+\ldots b_{k}
$$

Then
Theorem (McMullen, Stanley). (a) The $b_{k} s$ are integers.
(b) $b_{m-k}=b_{k}$
(c) $b_{0} \leq b_{1} \leq \cdots \leq b_{k}$ where $k=\left[\frac{m}{2}\right]$.

Proof. Exhibit Δ as the moment polytope of a toric variety of M.
(a) The $b_{k} \mathrm{~s}$ are Betti numbers of M (so integers)
(b) Poincare duality
(c) Hard Lefschetz.

