Lecture 35

Let G be a compact connected Lie group and $n=\operatorname{dim} G$, with Lie algebra \mathfrak{g}. We have a group lattice $\mathbb{Z}_{G} \subset \mathfrak{g}$, and the dual $\mathbb{Z}_{G}^{*} \subset \mathfrak{g}^{*}$ the weight lattice. Then $G=\mathfrak{g} / \mathbb{Z}_{G}$. We can define $\exp : \mathfrak{g} \rightarrow \mathfrak{g} / \mathbb{Z}_{G}$.

Take elements $\alpha_{i} \in \mathbb{Z}_{G}^{*}, i=1, \ldots, d$ then we get a representation $\tau: G \rightarrow G L(d, \mathbb{C})$ given by

$$
\tau(\exp v) z=\left(e^{\sqrt{-1} \alpha_{1}(v)} z_{1}, \ldots, e^{\sqrt{-1} \alpha_{d}} z_{d}\right)
$$

We can think of τ as an action. As such it preserves the Kaehler form

$$
\omega=\sqrt{-1} \sum d z_{i} \wedge d \bar{z}_{i}
$$

In fact, τ is Hamiltonian with momen t map

$$
\Phi: \mathbb{C}^{d} \rightarrow \mathfrak{g}^{*}, \quad \Phi(z)=\sum\left|z_{i}\right|^{2} \alpha_{i}
$$

Note that $\alpha_{1}, \ldots, \alpha_{d}$ are polarized if and only if there exists a $v \in \mathfrak{g}$ such that $\alpha_{i}(v)>0$ for all i.
Theorem. $\alpha_{i} s$ are polarized if and only if Φ, the moment map, is proper.
What are the regular values of Φ ?
Let

$$
\mathbb{R}_{+}^{d}=\left\{\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}, t_{i} \geq 0\right\}
$$

and take $I \subseteq\{1, \ldots, d\}$.
Notation. $\mathbb{R}_{I}^{d}=\left\{t \in \mathbb{R}^{d}, t_{i} \neq 0 \Leftrightarrow i \in I\right\}$
Consider the following maps: $L: \mathbb{R}^{d} \rightarrow \mathfrak{g}^{*}$ given by

$$
t \mapsto \sum t_{i} \alpha_{i}
$$

and $\gamma: \mathbb{C}^{d} \rightarrow \mathbb{R}_{+}^{d}$ given by

$$
z \mapsto\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right)
$$

Then for any $a \in \mathfrak{g}^{*}$, let $\Delta_{a}=L^{-1}(a) \cap \mathbb{R}_{+}^{d}$. Then $\Phi=L \circ \gamma$, so $z \in \Phi^{-1}(a)$ if and only if $\gamma(z) \in \Delta_{a}$.
Suppose that the α_{i} s are polarized. Then Δ_{a} is a compact convex set, and in fact it is a convex polytope
Definition. The index set of a polytope is defined to be

$$
\mathcal{I}_{\Delta_{a}}=\left\{I \mid \mathbb{R}_{I}^{d} \cap \Delta_{a} \neq 0\right\}
$$

The faces of the polytope Δ_{a} are the sets

$$
\Delta_{I}=\Delta_{a} \cap \mathbb{R}_{I}^{d}, \quad I \in \mathcal{I}_{\Delta}
$$

Theorem (1). Let $a \in \mathfrak{g}^{*}$. Then
(a) a is a regular value of Φ if and only if for every $I \in \mathcal{I}_{\Delta_{a}}$

$$
\operatorname{span}_{\mathbb{R}}\left\{a_{i}, i \in I\right\}=\mathfrak{g}^{*}
$$

(b) G acts freely on $\Phi^{-1}(a)$ if and only if for all $I \in \mathcal{I}_{\Delta_{a}}$

$$
\operatorname{span}_{\mathbb{Z}}\left\{a_{i}, i \in I\right\}=\mathbb{Z}_{G}^{*}
$$

\mathcal{I}_{Δ} is partially order by inclusion, i.e. $I_{1}<I_{2}$ if $I_{1} \subseteq I_{2} . I \in \mathcal{I}_{\Delta}$ is minimal iff the corresponding face Δ_{I} is a vertex of Δ_{a}, i.e. $\Delta_{I}=\left\{v_{I}\right\}$ where v_{I} is a vertex of Δ_{a}.
Theorem (2). (a) a is a regular value of the moment map Φ if and only if for every vertex v_{I} of Δ_{a}, $\alpha_{i}, i \in I$ are a basis of \mathfrak{g}^{*}.
(b) G acts freely on $\Phi^{-1}(a)$ if andonly if for every vertex v_{I} of $\Delta_{a}, \alpha_{i}, i \in I$ are a lattice basis for \mathbb{Z}_{G}^{*}.

Proof. In Theorem 1 it suffices to check a) and b) for the minimal elements I of \mathcal{I}_{Δ}.
Check that a) of Thm. 1 implies b) of Thm 2. So we just have to check a) of Thm. 2 .
Let $\Delta_{I}=\left\{v_{I}\right\}$, where I is a minimal element of \mathcal{I}_{Δ}. By Thm 1., $\operatorname{span}\left\{\alpha_{i}, i \in I\right\}=\mathfrak{g}^{*}$. Suppose α_{i} s are not a basis, then there exist c_{i} so that

$$
\sum_{i \in I} c_{i} \alpha_{i}=0
$$

Now, $v_{I}=\left(t_{1}, \ldots, t_{d}\right), t_{i}>0$ for $i \in I$ and $t_{i}=0$ for $i \notin I$. Define $\left(s_{1}, \ldots, s_{d}\right) \in \Delta_{a}$ by

$$
s_{i}= \begin{cases}t_{i}+\epsilon c_{i} & i \in I \\ 0 & i \notin I\end{cases}
$$

Then $L(s)=a, s \in \Delta_{I}$, so this contradicts that Δ_{I} is a singular point.
Notation. $\Delta \in \mathbb{R}^{d}$ a convex polytope, $v, v^{\prime} \in \operatorname{Vert}(\Delta)$. Then v and v^{\prime} are adjacent if they lie on a common edge of Δ.
Definition. An m-dimensional polytope Δ is simple if for every vertex v there are exactly m vertices adjacent to it.
[Next time we'll show that a is a regular value of Φ iff Δ_{a} is simple]
Example. A tetrahedron or a cube in \mathbb{R}^{3}. A pyramid is not simple.
$\Phi: \mathbb{C}^{d} \rightarrow \mathfrak{g}^{*}$, and a a regular value. G acts freely on $Z_{a}=\Phi^{-1}(a)$. Then we can form the symplectic quotient $M_{a}=\Phi^{-1}(a) / G$, which is a compact Kaehler manifold. We want to compute the de Rham and Dolbeault cohomology groups, $H_{D R}^{*}\left(M_{a}\right), H_{D o}^{*}\left(M_{a}\right)$. To compute the de Rham cohomology we're going to use Morse Theory.

A Digression on Morse Theory

Let M^{m} be a compact C^{∞} manifold and let $f: M \rightarrow \mathbb{R}$ be a smooth function.
$p \in \operatorname{Crit}(f)$ if and only if $d f_{p}=0$ (by definition). For any $p \in \operatorname{Crit}(f)$ we have the Hessian $d^{2} f_{p}$ a quadratic form on T_{p}. Let $\left(U, x_{1}, \ldots, x_{n}\right)$ be a coordinate patch centered at p. Then

$$
f(x)=c+\sum a_{i j} x_{i} x_{j}+O\left(x^{3}\right)=d^{2} f_{p}+O\left(x^{3}\right)
$$

and p is called non-degenerate if $d^{2} f_{p}$ is non-degenerate. If p is a non-degenerate critical point, then p is isolated.

Definition. f is Morse if all $p \in \operatorname{Crit}(f)$ are non-degenerate, which implies that

$$
\# \operatorname{Crit}(f)<\infty
$$

Definition. $p \in \operatorname{Crit}(f)$ then $\operatorname{ind} p=\operatorname{ind} d^{2} f_{p}$, i.e. if

$$
d^{2} f_{p}=-\left(x_{1}^{2}+\cdots+x_{k}^{2}\right)+x_{k+1}^{2}+\cdots+x_{m}^{2}
$$

then ind $d^{2} f_{p}=k$.
Theorem. Let $f: M \rightarrow \mathbb{R}$ be a Morse function with the property tat ind p is even for all $p \in C r i t(f)$. Then

$$
H^{2 k+1}(M)=0 \quad H^{2 k}(M)=\{p \in \operatorname{Crit}(f), \text { ind } p=2 k\}
$$

Back to Symplectic Reduction

Again, we're talking about the moment map $\Phi: \mathbb{C}^{d} \rightarrow \mathfrak{g}^{*}$, with a a regular value of $\Phi . G$ acts freely on Z_{a} and let $M_{a}=Z_{a} / G$. Then we have the following diagram:

and the mapping $\gamma: \mathbb{C}^{d} \rightarrow \mathbb{R}_{+}^{d}, z \mapsto\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{d}\right|^{2}\right) . \gamma$ is G-invariant.
This implies that there exists $\psi: M_{a} \rightarrow \mathbb{R}_{+}^{d}$ with the property that $\psi \circ \pi=\gamma \circ i$. Moreover $\gamma: Z_{a} \rightarrow \Delta_{a}$. So $\psi: M_{a} \rightarrow \Delta_{a}, \Delta_{a}$ is called the moment polytope.

Now take $\xi \in \mathbb{R}^{d}$ and let $f: M_{a} \rightarrow \mathbb{R}$ be $f(p)=\langle\psi(p), \xi\rangle$, i.e. $\pi^{*} f=i^{*} f_{0}$ where

$$
f_{0}(z)=\sum \xi_{i}\left|z_{i}\right|^{2}
$$

Theorem (Main Theorem). Assume for $v, v^{\prime} \in \operatorname{Vert}\left(\Delta_{a}\right)$, v, v^{\prime} adjacent that

$$
\left\langle v-v^{\prime}, \xi\right\rangle \neq 0
$$

then
(a) $f: M_{a} \rightarrow \mathbb{R}$ is Morse
(b) $\psi: M_{a} \rightarrow \Delta_{a}$ maps $\operatorname{Crit}(f)$ bijectively onto $\operatorname{Vert}\left(\Delta_{a}\right)$.
(c) For $p \in C r i t(f)$ and v the corresponding vertex let v_{1}, \ldots, v_{m} be the vertices adjacent to v. Then

$$
\underset{2}{\operatorname{ind}_{p}}=\#\left\{v_{i} \mid\left\langle v_{i}-v, \xi\right\rangle<0\right\}:=i n d_{v} \xi
$$

Corollary. $H^{2 k+1}\left(M_{a}\right)=0$ then

$$
b_{k}=H^{2 k}\left(M_{a}\right)=\#\left\{v \in \operatorname{Vert}\left(\Delta_{a}\right), i n d_{v} \xi=k\right\}
$$

that is, b_{k} is independent of ξ.

