Lecture 34

Let G be an n-dimensional compact connected abelian Lie group. Let \mathfrak{g} be the Lie algebra of G. For an abelian Lie group $\exp : \mathfrak{g} \to G$ is a group epi-morphism and $\mathbb{Z}_G = \ker \exp$ is called the **group** lattice of G. Since exp is an epi-morphisms, $G = \mathfrak{g}/\mathbb{Z}_G$. So we can think of $\exp : \mathfrak{g} \to G$ as a projection $\mathfrak{g} \to \mathfrak{g}/\mathbb{Z}_G.$

Representations of G

We introduce the dual lattice $\mathbb{Z}_G^* \subseteq \mathfrak{g}^*$ a weight lattice, with $\alpha \in \mathfrak{g}^*$ in \mathbb{Z}_G^* if and only if $\alpha(v) \in 2\pi\mathbb{Z}$ for all $v \in \mathbb{Z}_G$. Suppose we're given $\alpha_i \in \mathbb{Z}^a st_G$, i = 1, ..., d. We can define a homomorphism $\tau : G \to GL(d, \mathbb{C})$ by

(I)
$$\tau(\exp v)z = (e^{\sqrt{-1}\alpha_1(v)}z_1, \dots, e^{\sqrt{-1}\alpha_d(v)}z_d)$$

and this is well-defined, because if $v \in \mathbb{Z}_G$, $\tau(\exp v) = 1$. But think of τ as an action of G on \mathbb{C}^d . We get a corresponding infinitesimal actions

$$d\tau: \mathfrak{g} \to \mathcal{X}(G) \qquad v \mapsto v_{\mathbb{C}^d} \qquad d\tau(\exp - tv) = \exp tv_{\mathbb{C}^d}.$$

We want a formula for this. We introduce the coordinates $z_i = x_i + \sqrt{-1}y_i$. We claim

(II)
$$v_{\mathbb{C}}d = -\sum \alpha_i(v) \left(x_i \frac{\partial}{\partial y_i} - y_i \frac{\partial}{\partial x_j} \right).$$

We must check that for each coordinate z_i

$$\left. \frac{d}{dt} (\tau_{\exp -tv})^* z_i \right|_{t=0} = L_{v_{\mathbb{C}^d}} z_i.$$

The LHS is

$$\frac{d}{dt}e^{-\sqrt{-1}t\alpha_i(V)}z_i = -\alpha_i(v)z_i$$

and the RHS is

$$\left(x_i\frac{\partial}{\partial y_i} - y_i\frac{\partial}{\partial x_i}\right)\left(x_i + \sqrt{-1}y_i\right) = \sqrt{-1}z_i$$

so

$$L_{v_{\mathbb{C}^d}} z_i = \sqrt{-1}\alpha_i(v) z_i$$

Take ω to be the standard kaehler form on \mathbb{C}^d

$$\omega = \sqrt{-1} \sum dz_i \wedge d\bar{z}_i = 2 \sum dx_i \wedge dy_j$$

Theorem. τ is a Hamiltonian action with moment map

$$\Phi:\mathbb{C}^{d}
ightarrow\mathfrak{g}^{*}$$

where

$$\Phi(z) = \sum |z_i|^2 dz_i$$

Proof.

$$\begin{split} \iota(v_{\mathbb{C}^d})\omega &= \left(-\sum \alpha_i(v)\left(x_i\frac{\partial}{\partial y_i} - y_i\frac{\partial}{\partial x_i}\right)\right) \llcorner \sum dx_i \land dy_i \\ &= 2\sum \alpha_i(v)x_idx_i + y_idy_i = \sum \alpha_i(v)d(x_i^2 + y_i^2) \\ &= d\sum \alpha_i(v)|z_i|^2 = d\langle \Phi, v\rangle \end{split}$$

N.B. $\Phi(0) = 0, 0 \in (\mathbb{C}^d)^G$ implies that Φ is an equivariant moment map.

Definition. $\alpha_1, \ldots, \alpha_d$ are said to be polzarized if for all $v \in \mathfrak{g}$ we have $\alpha_i(v) > 0$.

Theorem. If $\alpha_1, \ldots, \alpha_d$ are polarized then $\Phi : \mathbb{C}^d \to \mathfrak{g}^*$ is proper.

Proof. The map $\langle \Phi, v \rangle : \mathbb{C}^d \to \mathbb{R}$ is already proper if $\alpha_i(v) > 0$, so the moment map itself is proper.

Now, given $z \in \mathbb{C}^d$, what can be said about G_z and \mathfrak{g}_z ?

Notation.
$$I_z = \{i, z_i \neq 0\}$$

Theorem. (a) $G_z = \{ \exp v \mid \alpha_i(v) \in 2\pi\mathbb{Z} \text{ for all } i \in I_z \}$

(b) $\mathfrak{g}_z = \{ v \mid \alpha_i(v) = 0 \text{ for all} i \in I \}$

Corollary. τ is locally free at z if and only if $span_{\mathbb{R}}\{\alpha_i, i \in I_z\} = \mathfrak{g}^*$. τ is free at z if and only if $span_{\mathbb{Z}}\{\alpha_i, i \in I_z\} = \mathbb{Z}_G^*$.

Let $a \in \mathfrak{g}^*$. Is a a regular value of Φ .

Notation.

$$\mathbb{R}^d_+ = \{(t_1, \dots, t_d) \in \mathbb{R}^d, t_i \ge 0\}$$
$$I \subset \{1, \dots, d\} \qquad (\mathbb{R}^d_+)_I = \{t \in \mathbb{R}^d_+, t_i > 0 \Leftrightarrow i \in I\}$$

Consider $L: \mathbb{R}^d_+ \to \mathfrak{g}^*$

$$L(t) = \sum t_i \alpha_i$$

Assume α_i 's are polarized. L is proper. Take $a \in \mathfrak{g}^*$. Let $\Delta_a = L^{-1}(a)$, then Δ_a is a convex polytope. Denote $\mathcal{I}_{\Delta_a} = \{I, (\mathbb{R}^d_+)_I \cap \Delta_a \neq \emptyset\}$. For $I \in \mathcal{I}_\Delta$ we have that $(\mathbb{R}^d_+)_I \cap \Delta =$ the faces of Δ .

Theorem. $a \in \mathfrak{g}^*$ is a regular value of Φ if and only if for all $I \in \mathcal{I}_{\Delta_a}$ we have $\operatorname{span}_{\mathbb{R}}\{a_i, i \in I\} = \mathfrak{g}^*$ and G acts freely on $\Phi^{-1}(a)$ if and only if $\operatorname{span}_{\mathbb{Z}}\{a_i, i \in I\} = \mathbb{Z}_G^*$.

Proof. Φ is the composite of $L : \mathbb{R}^d_+ \to \mathfrak{g}^*$ and the map $\gamma : \mathbb{C}^d \to \mathbb{R}^d_+$ which maps $z \mapsto (|z_1|^2, \ldots, |z_d|^2)$ so $z \in \Phi^{-1}(a)$ if an only if $\gamma(z) \in \Delta_a$. How just apply above.

Symplectic Reduction

Take $a \in \mathfrak{g}^*$. Suppose a is a regular value of Φ , i.e. $\mathfrak{g}_z = \{0\}$ for all $z \in \Phi^{-1}(a)$. Then $\mathbb{Z}_a = \Phi^{-1}(a)$ is a compact submanifold of \mathbb{C}^d .

Suppose G acts freely on Z_a . Then $M_a = Z_a/G$. Consider $i: Z_a \to \mathbb{C}, \pi: Z_a \to M_a$. **Theorem.** There exists a unique symplectic form ω_a on M_a such that $\pi^* \omega_a = i^* \omega_a$.

Proof. Apply the symplectic quotient procedure to $\Phi^{-1}(a)$.

Let $G_{\mathbb{C}} = \mathfrak{g}_{\mathbb{C}}/\mathbb{Z}_G = \mathfrak{g} \otimes \mathbb{C}/\mathbb{Z}_q$. By (I), τ extends to a holomorphic action of $G_{\mathbb{C}}$ on \mathbb{C}^d . Then

$$G_{\mathbb{C}} \cdot \Phi^{-1}(a) = \{ \tau_g(z) \mid g \in G_{\mathbb{C}}, z \in Z_a \} = \mathbb{C}^d_{\text{stable}}(a)$$

then $M_a = \mathbb{C}^d_{\text{stable}}(a)/G_{\mathbb{C}}$ = the holomorphic description of M_a . ω_a is Kaehler. This M_a is a toric variety. **Theorem.**

$$\mathbb{C}^d_{stable}(a) = \bigcup_{I \in \mathcal{I}_\Delta} \mathbb{C}^d_I$$

where

$$\mathbb{C}_I^d = \{ z \in \mathbb{C}^d \mid I_z = I \}$$