Lecture 33

First, some general Lie theory things. G a compact, connected Lie group. Let $G_{\mathbb{C}} \supset G$ a complex Lie group.
Definition. $G_{\mathbb{C}}$ is the complexification of G if
(a) $\mathfrak{g}_{\mathbb{C}}=$ Lie $G_{\mathbb{C}}=\mathfrak{g} \otimes \mathbb{C}$
(b) The complex structure on $T_{e} G_{\mathbb{C}}$ is the standard complex structure on $\mathfrak{g} \otimes \mathbb{C}$.
(c) $\exp : \mathfrak{g}_{\mathbb{C}} \rightarrow G_{\mathbb{C}}$ maps \mathfrak{g} into G.
(d) The map $\sqrt{-1} \mathfrak{g} \times G \rightarrow G_{\mathbb{C}}$ defined by $(\omega, g) \mapsto(\exp \omega) g$ is a diffeomorphism.

Take $G=U(n)$. What is \mathfrak{g} ? Let H_{n} be the Hermitian matrices. If $A \in H_{n}$, then $\exp \sqrt{-1} t A \subset U(n)$, so $\mathfrak{g}=\sqrt{-1} H_{n}$.

Exercise Show $G_{\mathbb{C}}=G L(n, \mathbb{C})$
Hints:
(a) $M_{n}(\mathbb{C})=\operatorname{Lie} G L(n, \mathbb{C})=H_{n} \oplus \sqrt{-1} H_{n}$ given by the decomposition

$$
A \mapsto \frac{A+\bar{A}^{t}}{2}+\frac{A-\bar{A}^{t}}{2}
$$

(b) Polar decomposition theorem: For $A \in G L(n, \mathbb{C})$ then $A=B C$ where B is positive definite, $B \in H^{n}$ and $C \in U(n)$.
(c) $\exp : H_{n}^{*} \rightarrow H_{n}^{* \operatorname{pos} . ~ d e f}$ is an isomorphism. This maps a matrix with eigenvalues λ_{i} to a matrix with eigenvalues $e^{\lambda_{i}}$.
Example. Take G a compact, connected abelian Lie group. Then $G=\mathfrak{g} / \mathbb{Z}_{G}$ and $G_{\mathbb{C}}=\mathfrak{g}_{\mathbb{C}} / \mathbb{Z}_{G}$.
Let M be a Kaehler manifold, ω a Kaehler form, and τ a holomorphic action of $G_{\mathbb{C}}$ on M.
Definition. τ is a Kaehler action if $\left.\tau\right|_{G}$ is hamiltonian.
So we have a moment map $\Phi: M \rightarrow \mathfrak{g}^{*}$ and for $v \in \mathfrak{g}$ we have v_{M} a vector field on M, and

$$
\iota\left(v_{M}\right) \omega=d \phi^{v} \quad \phi^{v}=\langle\Phi, v\rangle
$$

For $p \in M$ note that because M is Kaehler we have the addition bits of structure $\left(B_{r}\right)_{p},\left(B_{s}\right)_{p}, J_{p}$ on $T_{p} M$.

Now take $v \in \mathfrak{g}, \sqrt{-1} v=w \in \mathfrak{g}_{\mathbb{C}}$. From these we get corresponding vector fields v_{M}, w_{M}.
Lemma. At every $p \in M$

$$
w_{M}(p)=J_{p} v_{M}(p)
$$

Proof. Consider $\epsilon: G_{\mathbb{C}} \rightarrow M, g \mapsto \tau_{g^{-1}}(p)$. This is a holomorphic map and $(d \epsilon)_{p}: \mathfrak{g}_{\mathbb{C}} \rightarrow T_{p} M$ is \mathbb{C}-linear and maps v, w into $v_{M}(p), w_{M}(p)$.

Proposition. If $v \in \mathfrak{g}, w=\sqrt{-1} v$, ten the vector field w_{M} is the Riemannian gradient of ϕ^{v}.
Proof. Take $p \in M, v \in T_{p} M$. Then

$$
\left(B_{r}\right)_{p}\left(v, w_{M}(p)\right)=B_{s}\left(v, J_{p} w_{M}(p)\right)=-B_{s}\left(v, v_{M}(p)\right)=\iota\left(v_{M}(p)\right) \omega_{p}(v)=d \phi_{p}^{v}(v)
$$

QED

Assume $\Phi: M \rightarrow \mathfrak{g}^{*}$ is proper. Let $Z=\Phi^{-1}(0)$. Assume that G acts freely on Z. Then Z is a compact submanifold of M. Then we can form the reduction $M_{\text {red }}=Z / G$.

Consider $G_{\mathbb{C}} \times Z \rightarrow M$ given by $(g, z) \mapsto \tau_{g}(z)$. Let $M_{s t}$ be the image of this map. Note that $G_{\mathbb{C}}$ is a subset of M.

Theorem (Main Theorem). (a) $M_{s t}$ is an open $G_{\mathbb{C}}$-invariant subset of M.
(b) $G_{\mathbb{C}}$ acts freely and properly on $M_{s t}$.
(c) Every $G_{\mathbb{C}}$ orbit in $M_{s t}$ intersects Z in a unique G-orbit.
(d) Hence $M_{s t} / G_{\mathbb{C}}=Z / G=M_{\text {red }}$.
(e) $\omega_{\text {red }}$ is Kaehler.

Proof. (a) Since $M_{s t}$ is $G_{\mathbb{C}}$-invariant it suffices to show that $M_{s t}$ contains an open neighborhood of Z. Note that since $G_{\mathbb{C}}=(\exp \sqrt{-1} g) G$ implies that $M_{s t}$ is the image of

$$
\psi: \sqrt{-1} g \times Z \rightarrow M \quad(\omega, p) \mapsto\left(\exp w_{m}\right)(p)
$$

Hence it suffices to show that ψ is a local diffeomorphism at all points $(0, p)$. Hence it suffices to show that $(d \psi)_{0, p}$ is bijective.
But $(d \pi)_{0, p}: T_{p} Z \rightarrow T_{p} Z$. So it suffices to finally prove that
Lemma. $(d \psi)_{0, p}$ maps $\sqrt{-1} \mathfrak{g}$ bijectively onto $\left(T_{p} Z\right)_{p}^{\perp}$ in $T_{p} M$.
Proof. Let $w=\sqrt{-1} v$ in $\sqrt{-1} \mathfrak{g}, v \in T_{p} Z$. Then

$$
B_{r}\left(v, w_{M}(p)\right)=d \varphi_{p}^{v}(v)=0
$$

so $w_{M}(p) \perp T_{p} Z$.
(b) $G_{\mathcal{C}}$ acts freely on $M_{s t}$.

Lemma. If $p \in Z$ and $w \in \sqrt{-1} \mathfrak{g}-\{0\}$. Then $\left(\exp w_{M}\right)(p) \in Z$.
Proof. Let $w=\sqrt{-1} v, v \in \mathfrak{g}$, then $\left(\exp t w_{M}\right)(p)$ is an integral curve of a gradient vector field of φ^{v}. Now $\varphi^{v}(p)=0$ so $\varphi^{v}\left(\exp t w_{M}\right)(p)>0$ for $t>0$ (since gradient vector fields are increasing. So $\varphi^{v}\left(\exp w_{M}\right)(p)>0$ and so $\exp w_{M}(p) \notin Z$.

To show that $G_{\mathbb{C}}$ acts freely on $M_{s t}$ it suffices to show that $G_{\mathbb{C}}$ acts freely at $p \in Z$. Let $a \in G_{\mathbb{C}}$, $a=(\exp -w)_{g}$, where $w \in \sqrt{-1} \mathfrak{g}, g \in G$. Suppose $a \in\left(G_{\mathbb{C}}\right)_{p}$ then $\left(\exp w_{M}\right)\left(\tau_{g}(p)\right)=p$. But $\tau_{g}(p)=q \in Z$. So $\left(\exp w_{M}\right)(q)=p \in Z$ which implies $w=0, a=G$. So $\left(G_{\mathbb{C}}\right)=G_{p}=\{e\}$.
We will skip proving that $G_{\mathbb{C}}$ acts properly on $M_{s t}$.
(c) This will be an exercise

Exercise Every $G_{\mathbb{C}}$ orbit in $M_{s t}$ intersects Z in a unique G orbit. Hint: Every $G_{\mathbb{C}}$ orbit in $M_{s t}$ is of the form $G_{\mathbb{C}} \circ p$ with $p \in Z . a \in\left(G_{\mathbb{C}} \circ p\right) \cap Z$. Then $a=\left(\exp w_{M}\right) \tau_{g}(p), g \in G, w \in-s q r t-1 \mathfrak{g}$. Argue as before and force $w=0$.
(d) So $M_{r e d}=Z / G=M_{s t} / G_{\mathbb{C}}$.
(e) All that remains to show is that $\omega_{\text {red }}$ is Kaehler.

Proof. $p \in Z, \pi: Z \rightarrow M_{\text {red }}, q=\pi(p)$. Let V be the B_{r}-orthocomplement in $T_{p} M$ to $T_{p}\left(G_{\mathbb{C}} \circ p\right)$ implies that $V \subseteq T_{p} Z$ and its perpendicular to $T_{p} G \circ p$.
Remember we have $d \pi: M_{s t} \rightarrow M_{\text {red }}=M_{s t} / G_{\mathbb{C}}$ is a holomorphic action.
So $d \pi_{p}: V \rightarrow T_{q} M_{\text {red }}$ is \mathbb{C}-linear and $\omega_{p}\left|V=\left(d \pi_{p}\right)^{*} \omega_{r e d}\right|_{V}$, where V a complementary subspace of $T_{p} M$ so $\omega_{p} \mid$ is Kaehler implies that $\left(\omega_{r e d}\right)_{q}$ is Kaehler.

