Lecture 30

Lemma. $d, d^{\mathbb{C}}$ anti-commute
Proof. Write $d=\partial+\bar{\partial}$, where $\partial: \Omega^{p, q} \rightarrow \Omega^{p+1, q}, \bar{\partial}: \Omega^{p, q} \rightarrow \Omega^{p, q+1}$. Now, $d^{\mathbb{C}}=J^{-1} d J=J^{-1} \partial J+J^{-1} \bar{\partial} J$. Take $\alpha \in \Omega^{p, q}$ then

$$
\begin{aligned}
& J^{-1} \partial J \alpha=i^{p-q} J^{-1} \partial \alpha=-\frac{i^{p-q}}{i^{p+1-q}} \partial \alpha=-i \partial \alpha \\
& J^{-1} \bar{\partial} J \alpha=\frac{i^{p-q}}{i^{p-(q+1)}} \bar{\partial} \alpha=i \bar{\partial} \alpha
\end{aligned}
$$

So $d^{\mathbb{C}}=-i(\partial-\bar{\partial})$, so $d^{\mathbb{C}}, d$ anti-commute because $\partial+\bar{\partial}$ and $\partial=\bar{\partial}$ anti-commute.
Now, some more Hodge Theory.
Take the identity $d^{\mathbb{C}}=[\delta, L]$ and decompose into its homogeneous components, by using $d^{\mathbb{C}}=-i(\partial-\bar{\partial})$. Then $\partial^{t}: \Omega^{p, q} \rightarrow \Omega^{p-1, q}, \partial^{t}: \Omega^{p, q} \rightarrow \Omega^{p, q-1}$ then $\delta=d^{t}=\partial^{t}+\bar{\partial}^{t}$. So $d^{\mathbb{C}}=[\delta, L]$ because

$$
-i(\partial-\bar{\partial})=\left[\partial^{t}, L\right]+\left[\bar{\partial}^{t}, L\right]
$$

and by matching degrees we get

$$
i \bar{\partial}=\left[\partial^{t}, L\right] \quad-\partial=\left[\bar{\partial}^{t}, L\right]
$$

We'll play around with these identities for a little while.
We already know that $\partial^{2}=\bar{\partial}^{2}=\partial \bar{\partial}+\bar{\partial} \partial=0$. And so $\left(\partial^{t}\right)^{2}=\left(\bar{\partial}^{t}\right)^{2}=\bar{\partial}^{t} \partial^{t}+\partial^{t} \bar{\partial}^{t}=0$. Bracket these with L and we get

$$
0=\left[\left(\partial^{t}\right)^{2}, L\right]=\left[\partial^{t}, L\right] \partial^{t}+\partial^{t}\left[\partial^{t}, L\right]=i \bar{\partial} \partial^{t}+\partial^{t}(i \bar{\partial})
$$

so

$$
\bar{\partial} \partial^{t}+\partial^{t} \bar{\partial}=0
$$

Similarly, from $0=\left[\left(\bar{\partial}^{t}\right)^{2}, L\right]$ we get

$$
\bar{\partial}^{t} \partial+\partial \bar{\partial}^{t}=0
$$

Lemma. The above identities imply the following

$$
\Delta=\Delta_{\partial}+\Delta_{\bar{\partial}}
$$

Proof.

$$
\begin{aligned}
\Delta & =d d^{t}+d^{t} d \\
& =(\partial+\bar{\partial})\left(\partial^{t}+\bar{\partial}^{t}\right)+\left(\partial^{t}+\bar{\partial}^{t}\right)(\partial+\bar{\partial}) \\
& =\Delta_{\partial}+\Delta_{\bar{\partial}}+\left(\bar{\partial} \partial^{t}+\partial \bar{\partial}^{t}\right)+\left(\partial^{t} \bar{\partial}+\bar{\partial}^{t} \partial\right)
\end{aligned}
$$

Now since $\partial^{t} \bar{\partial}^{t}+\bar{\partial}^{t} \partial^{t}=0$ and we get

$$
\begin{aligned}
0 & =\left[\bar{\partial}^{t} \partial^{t}+\partial^{t} \bar{\partial}^{t}, L\right] \\
& =\left[\partial^{t} \bar{\partial}^{t}, L\right]+\left[\bar{\partial}^{t} \partial^{t}, L\right] \\
& =\partial^{t}\left[\bar{\partial}^{t}, L\right]+\left[\partial^{t}, L\right] \bar{\partial}^{t}+\bar{\partial}^{t}\left[\partial^{t}, L\right]+\left[\bar{\partial}^{t}, L\right] \partial^{t} \\
& =-i\left(\partial^{t} \partial-\overline{\partial \partial}^{t}\right)-i\left(\partial \partial^{t}-\bar{\partial}^{t} \bar{\partial}\right)
\end{aligned}
$$

And we get $\partial^{t} \partial+\partial \partial^{t}-\bar{\partial}^{t} \bar{\partial}-\overline{\partial \bar{\partial}}^{t}=0$, i.e.

$$
\Delta_{\partial}-\Delta_{\bar{\partial}}=0
$$

But since $\Delta=\Delta_{\partial}+\Delta_{\bar{\partial}}, \Delta_{\partial}=\Delta_{\bar{\partial}}=\frac{1}{2} \Delta$.
"This has some really neat applications"

Neat Applications

$\Delta_{\bar{\partial}}$ is the Laplace operator for the $\bar{\partial}$ complex

$$
\Omega^{1,0} \xrightarrow{\bar{\partial}} \Omega^{i, 1} \xrightarrow{\bar{\partial}} \cdots
$$

so it maps $\Omega^{i, j}$ to $\Omega^{i, j}$ which implies $\Delta: \Omega^{i, j} \rightarrow \Omega^{i, j}$.
So $\mathcal{H}^{k}=\operatorname{ker} \Delta: \Omega^{k} \rightarrow \Omega^{k}$ is a direct such

$$
\mathcal{H}^{k}=\bigoplus_{i+j=k} \mathcal{H}^{i, j}
$$

where $\mathcal{H}^{i, j}=\mathcal{H}^{k} \cap \Omega^{i, j}$.
We get a similar decomposition in cohomology

$$
H^{k}(X, \mathbb{C})=\bigoplus_{i+j=k} H^{i, j}(X)=\operatorname{Im} \mathcal{H}^{i, j}
$$

where $\mathcal{H}^{i, j}=\operatorname{ker} \Delta_{\bar{\partial}}: \Omega^{i, j} \rightarrow \Omega^{i, j}$, so $\mathcal{H}^{i, j}$ is the j th harmonic space for the Dolbeault complex.
So $H^{k}(X, \mathbb{C})=\bigoplus H \frac{i, j}{\partial}(X)$.

