Lecture 29

We now extend $*_r, *_s, J, L, L^t$, \mathbb{C} -linearly to $\Lambda^* \otimes \mathbb{C}$. And extend B_r, B_s to \mathbb{C} -linear forms on $\Lambda^k \otimes \mathbb{C}$. We can now take $\Lambda^1 \otimes \mathbb{C} = \Lambda^{1,0} \oplus \Lambda^{0,1}$, where as usual the two elements of the splitting are the eigenspaces of the J operator.

If we now let $e_1, f_1, \ldots, e_n, f_n$ be a Kaehlerian Darboux basis of V and set

$$u_i = \frac{1}{2\sqrt{-1}}(e_i - \sqrt{-1}f_i)$$

then u_1, \ldots, u_n is an orthonormal basis of $\Lambda^{1,0}$ with respect to the Hermitian form $(u, v) = B_r(u, \bar{v})$ and $\bar{u}_1, \ldots, \bar{u}_n$ is an orthonormal basis of $\Lambda^{0,1}$. We know from earlier that * gives rise to a splitting

$$\Lambda^k\otimes\mathbb{C}=\bigoplus_{p+q=k}\Lambda^{p,q}$$

and if I and J are multi-indices of length p and q, then the $u_I \wedge \bar{u}_J$ forms form an orthonormal basis of $\Lambda^{p,q}$ with respect to the Riemannian bilinear form $(\alpha, \beta) = B_r(\alpha, \overline{\beta})$.

In particular $\Lambda^k \otimes \mathbb{C} = \bigoplus_{p+q} \Lambda^{p+q}$ is an orthonormal decomposition of $\Lambda^k \otimes \mathbb{C}$ with respect to the inner product $(\alpha, \beta) = B_r(\alpha, \overline{\beta}).$

In terms of $u_1, \ldots, u_n \in \Lambda^{1,0}$, the symplectic form is

$$\omega = \frac{1}{2\sqrt{-1}} \sum u_i \wedge \bar{u}_i \in \Lambda^{1,1}$$

Consequences:

- (a) $L: \Lambda^{p,q} \to \Lambda^{p+1,q+1}, \alpha \in \Lambda^{p,q}$
- (b) $J = (\sqrt{-1})^{p-q} I d$ on $\Lambda^{p,q}$.
- (c) The star operators behave nicely, $*_s : \Lambda^{p,q} \to \Lambda^{n-p,n-q}$.
- (d) $*_r : \Lambda^{p,q} \to \Lambda^{n-p,n-q}, *_r = *_s J.$
- (e) $L^t: \Lambda^{p,q} \to \Lambda^{p-1,q-1}$ because $L^t = *_s L *_s$.

So all the operators behave well as far as bi-degrees are concerned.

Kaehlerian Hodge Theory 5.0.4

Let (X^{2n}, ω) be a compact Kaehler manifold, with $\omega \in \Omega^{1,1}$ a Kaehler form.

From the complex structure we get a mapping $J_p: \Lambda^k(T_p^*) \otimes \mathbb{C} \to \Lambda^k(T_p^*) \otimes \mathbb{C}$. This induces a mapping $J: \Omega^k(X) \to \Omega^k(X)$ by defining $(J\alpha)_p = J_p \alpha_p$ and we have as before the *-operators, $*_r, *_s: \Omega^k(X) \to \Omega^k(X)$ Ω^{2n-k} related by $*_r = *_s \otimes J$.

We also have $\langle , \rangle_r, \langle , \rangle_s$ bilinear forms on Ω^k defined by

$$\langle \alpha, \beta \rangle_r = \int_X \alpha \wedge *_r \bar{\beta} \qquad \langle \alpha, \beta_S = \int_X \alpha \wedge *_s \beta$$

 $L: \Omega^k \to \Omega^{k+2}$ is given by $\alpha \mapsto \omega \wedge \alpha$ and $L^t = *_s L *_s = *_r^{-1} L *_r$, the transpose of L with respect to \langle , \rangle_r and \langle,\rangle_s .

Finally, we have $d: \Omega^k \to \Omega^{k+1}$ and its transpose $\delta = \delta_r$ the transpose w.r.t. \langle , \rangle_r and δ_s the transpose w.r.t. \langle , \rangle_s .

On Ω^k , $\delta_r = (-1)^k *_r^{-1} d*_r$ and $\delta_s = (-1)^k *_s d*_s$. But from $*_r = *_s \circ J$ we get

$$\delta_r = (-1)^k J^{-1} *_s^{-1} d *_s \circ J = J^{-1} \delta_s J$$

We proved a little while ago that $d = [\delta_s, L]$. What happens upon conjugation by J?

$$JdJ^{-1} = [J^{-1}\delta_s J, L] = [\delta, L]$$

We make the following definition

Definition. $d_{\mathbb{C}} = JdJ^{-1}$

So now we have

$$d_{\mathbb{C}} = [\delta, L]$$

Theorem. d and $d_{\mathbb{C}}$ anti-commute

We'll prove this later. But for now, we'll prove an important corollary

Corollary. Let $\Delta = d\delta + \delta d$. Then L and L^t commute with Δ

Proof. $[d\delta, L] = [d, L]\delta + d[\delta, L]$, and we showed before that [d, L] = 0 and $d[\delta, L] = dd_{\mathbb{C}}$. Similarly $[\delta d, L] = d_{\mathbb{C}}d$, so $[\Delta, L] = 0$.

 L^t is the Riemannian transpose of L, and in this setting $\Delta^t = \Delta$, so $[\Delta, L^t] = 0$.

We will now use the above to prove Hard Lefshetz Takef

$$\mathcal{H} = \bigoplus_k \mathcal{H}^k \qquad \mathcal{H}^k = \ker \Delta : \Omega^k \to \Omega^k$$

By the results above \mathcal{H} is invariant under L, L^t and $A = [L, L^t]$. So \mathcal{H} is a finite-dimensional $SL(2, \mathbb{R})$ module.

We prove for $SL(2,\mathbb{R})$ modules that $L^k: \mathcal{H}^{n-k} \to \mathcal{H}^{n+k}$ is bijective. In the Kaehler case we get the following diagram

$$\begin{array}{c} \mathcal{H}^{n-k} \xrightarrow{L_k} \mathcal{H}^{n+k} \\ \cong \bigvee \qquad & \downarrow \cong \\ H^{n-k}_{DR}(X) \xrightarrow{\gamma^k} H^{n+k}_{DR}(X) \end{array}$$

where $\gamma^k c = [\omega^k] \wedge c$.

Unlike the diagram in the symplectic case, in this case the vertical arrows are bijections. So γ^k is bijective, which is strong Lefshetz.