Lecture 29

We now extend $*_{r}, *_{s}, J, L, L^{t}, \mathbb{C}$-linearly to $\Lambda^{*} \otimes \mathbb{C}$. And extend B_{r}, B_{s} to \mathbb{C}-linear forms on $\Lambda^{k} \otimes \mathbb{C}$.
We can now take $\Lambda^{1} \otimes \mathbb{C}=\Lambda^{1,0} \oplus \Lambda^{0,1}$, where as usual the two elements of the splitting are the eigenspaces of the J operator.

If we now let $e_{1}, f_{1}, \ldots, e_{n}, f_{n}$ be a Kaehlerian Darboux basis of V and set

$$
u_{i}=\frac{1}{2 \sqrt{-1}}\left(e_{i}-\sqrt{-1} f_{i}\right)
$$

then u_{1}, \ldots, u_{n} is an orthonormal basis of $\Lambda^{1,0}$ with respect to the Hermitian form $(u, v)=B_{r}(u, \bar{v})$ and $\bar{u}_{1}, \ldots, \bar{u}_{n}$ is an orthonormal basis of $\Lambda^{0,1}$.

We know from earlier that $*$ gives rise to a splitting

$$
\Lambda^{k} \otimes \mathbb{C}=\bigoplus_{p+q=k} \Lambda^{p, q}
$$

and if I and J are multi-indices of length p and q, then the $u_{I} \wedge \bar{u}_{J}$ forms form an orthonormal basis of $\Lambda^{p, q}$ with respect to the Riemannian bilinear form $(\alpha, \beta)=B_{r}(\alpha, \bar{\beta})$.

In particular $\Lambda^{k} \otimes \mathbb{C}=\bigoplus_{p+q} \Lambda^{p+q}$ is an orthonormal decomposition of $\Lambda^{k} \otimes \mathbb{C}$ with respect to the inner product $(\alpha, \beta)=B_{r}(\alpha, \bar{\beta})$.

In terms of $u_{1}, \ldots, u_{n} \in \Lambda^{1,0}$, the symplectic form is

$$
\omega=\frac{1}{2 \sqrt{-1}} \sum u_{i} \wedge \bar{u}_{i} \in \Lambda^{1,1}
$$

Consequences:
(a) $L: \Lambda^{p, q} \rightarrow \Lambda^{p+1, q+1}, \alpha \in \Lambda^{p, q}$
(b) $J=(\sqrt{-1})^{p-q} I d$ on $\Lambda^{p, q}$.
(c) The star operators behave nicely, $*_{s}: \Lambda^{p, q} \rightarrow \Lambda^{n-p, n-q}$.
(d) $*_{r}: \Lambda^{p, q} \rightarrow \Lambda^{n-p, n-q}, *_{r}=*_{s} J$.
(e) $L^{t}: \Lambda^{p, q} \rightarrow \Lambda^{p-1, q-1}$ because $L^{t}=*_{s} L *_{s}$.

So all the operators behave well as far as bi-degrees are concerned.

5.0.4 Kaehlerian Hodge Theory

Let $\left(X^{2 n}, \omega\right)$ be a compact Kaehler manifold, with $\omega \in \Omega^{1,1}$ a Kaehler form.
From the complex structure we get a mapping $J_{p}: \Lambda^{k}\left(T_{p}^{*}\right) \otimes \mathbb{C} \rightarrow \Lambda^{k}\left(T_{p}^{*}\right) \otimes \mathbb{C}$. This induces a mapping $J: \Omega^{k}(X) \rightarrow \Omega^{k}(X)$ by defining $(J \alpha)_{p}=J_{p} \alpha_{p}$ and we have as before the $*$-operators, $*_{r}, *_{s}: \Omega^{k}(X) \rightarrow$ $\Omega^{2 n-k}$ related by $*_{r}=*_{s} \otimes J$.

We also have $\langle,\rangle_{r},\langle,\rangle_{s}$ bilinear forms on Ω^{k} defined by

$$
\langle\alpha, \beta\rangle_{r}=\int_{X} \alpha \wedge *_{r} \bar{\beta} \quad\left\langle\alpha, \beta_{S}=\int_{X} \alpha \wedge *_{s} \beta\right.
$$

$L: \Omega^{k} \rightarrow \Omega^{k+2}$ is given by $\alpha \mapsto \omega \wedge \alpha$ and $L^{t}=*_{s} L *_{s}=*_{r}^{-1} L *_{r}$, the transpose of L with respect to \langle,\rangle_{r} and \langle,\rangle_{s}.

Finally, we have $d: \Omega^{k} \rightarrow \Omega^{k+1}$ and its transpose $\delta=\delta_{r}$ the transpose w.r.t. \langle,\rangle_{r} and δ_{s} the transpose w.r.t. \langle,\rangle_{s}.

On $\Omega^{k}, \delta_{r}=(-1)^{k} *_{r}^{-1} d *_{r}$ and $\delta_{s}=(-1)^{k} *_{s} d *_{s}$. But from $*_{r}=*_{s} \circ J$ we get

$$
\delta_{r}=(-1)^{k} J^{-1} *_{s}^{-1} d *_{s} \circ J=J^{-1} \delta_{s} J
$$

We proved a little while ago that $d=\left[\delta_{s}, L\right]$. What happens upon conjugation by J ?

$$
J d J^{-1}=\left[J^{-1} \delta_{s} J, L\right]=[\delta, L]
$$

We make the following definition
Definition. $d_{\mathbb{C}}=J d J^{-1}$
So now we have

$$
d_{\mathbb{C}}=[\delta, L]
$$

Theorem. d and $d_{\mathbb{C}}$ anti-commute
We'll prove this later. But for now, we'll prove an important corollary
Corollary. Let $\Delta=d \delta+\delta d$. Then L and L^{t} commute with Δ
Proof. $[d \delta, L]=[d, L] \delta+d[\delta, L]$, and we showed before that $[d, L]=0$ and $d[\delta, L]=d d_{\mathbb{C}}$. Similarly $[\delta d, L]=$ $d_{\mathbb{C}} d$, so $[\Delta, L]=0$.
L^{t} is the Riemannian transpose of L, and in this setting $\Delta^{t}=\Delta$, so $\left[\Delta, L^{t}\right]=0$.
We will now use the above to prove Hard Lefshetz
Takef

$$
\mathcal{H}=\bigoplus_{k} \mathcal{H}^{k} \quad \mathcal{H}^{k}=\operatorname{ker} \Delta: \Omega^{k} \rightarrow \Omega^{k}
$$

By the results above \mathcal{H} is invariant under L, L^{t} and $A=\left[L, L^{t}\right]$. So \mathcal{H} is a finite-dimensional $S L(2, \mathbb{R})$ module.

We prove for $S L(2, \mathbb{R})$ modules that $L^{k}: \mathcal{H}^{n-k} \rightarrow \mathcal{H}^{n+k}$ is bijective.
In the Kaehler case we get the following diagram

where $\gamma^{k} c=\left[\omega^{k}\right] \wedge c$.
Unlike the diagram in the symplectic case, in this case the vertical arrows are bijections. So γ^{k} is bijective, which is strong Lefshetz.

