Lecture 28

The $H_{D R}^{k}$ are finite-dimensional.

Poincare Duality

Make a pairing $P: \Omega^{k} \times \Omega^{n-k} \rightarrow \mathbb{C}$ given by

$$
P(\alpha, \beta)=\int_{X} \alpha \wedge \beta
$$

If α is exact and β closed then $P(\alpha, \beta)=0$, since $\alpha=d \omega, d \beta=0$ and $\alpha \wedge \beta=d u \wedge \beta=d(u \wedge \beta)$. By stokes $\int \alpha \wedge \beta$ is thus $0 . P$ induces a pairing in cohomology, $P^{\sharp}: H_{D R}^{k} \times H_{D R}^{n-k} \rightarrow \mathbb{C}$.

Theorem (Poincare). This is a non-degenerate pairing.
We give a Hodge Theoretic Proof. First,
Lemma. $\delta: \Omega^{k} \rightarrow \Omega^{k-1}$ is given by $\delta=(-1)^{k} *^{-1} d *$
Proof. Let $\delta_{1}=(-1)^{k} *^{-1} d *$, we want to show that $\delta=\delta_{1}$. Let $\alpha \in \Omega^{k-1}$ and $\beta \in \Omega^{n-k}$ then

$$
\begin{aligned}
d(\alpha \wedge \bar{\beta}) & =d \alpha \wedge \bar{\beta}+(-1)^{k-1} \alpha \wedge d * \bar{\beta} \\
& =d \alpha \wedge * \bar{\beta}+(-1)^{k-1} \alpha \wedge *\left(*^{-1} d * \bar{\beta}\right) \\
& =d \alpha \wedge * \bar{\beta}-\alpha \wedge *\left(\overline{\delta_{1} \beta}\right)
\end{aligned}
$$

Now integrate and apply stokes

$$
\int d \alpha \wedge * \bar{\beta}=\int \alpha \wedge * \delta_{1} \beta
$$

so $\langle d \alpha, \beta\rangle=\left\langle\alpha, \delta_{1} \beta\right\rangle$ and $\delta_{1}=d^{t}=\delta$.
Corollary. $* \mathcal{H}^{k}=\mathcal{H}^{n-k}$
Proof. Take $\alpha \in \mathcal{H}^{k}$. We'll show that $d * \alpha=0$. This happens iff $*^{-1} d * \alpha= \pm \delta \alpha$. Since $\delta \alpha=0, d * \alpha=0$. It is similarly easy to check that $\delta * \alpha=0$.
Proof of Poincare Duality. If suffices to check that the pairing $P: \mathcal{H}^{k} \times \mathcal{H}^{n-k} \rightarrow \mathbb{C}$ given by $\alpha, \beta \mapsto \int_{X} \alpha \wedge \beta$ is non-degenerate.

Suppose $P(\alpha, \beta)=0$ for all β. Take $\beta=* \bar{\alpha}$. Then

$$
P(\alpha, \beta)=\int_{X} \alpha \wedge * \bar{\alpha}=\langle\alpha, \alpha\rangle=0
$$

so this would imply that $\alpha=0$.

A Review of Kaehlerian Linear Algebra

Definition. $V=V^{2 n}$ a vector space over \mathbb{R}, B_{s} a non-degenerate alternating bilinear form on $V, J: V \rightarrow V$ a linear map such that $J^{2}=-I . B_{s}$ and J are compatible if $B_{s}(J v, J w)=B_{s}(v, w)$.
Lemma. If B_{s} and J are compatible if and only if the bilinear form $B_{r}(v, w)=B_{s}(v, J w)$ is symmetric. (Here B_{r} is a Riemannian metric)
J, B_{s} Kaehler implies that B_{r} is positive definite.
Notice that $B_{r}(J v, J w)=B_{s}\left(J v, J^{2} w\right)=B_{s}(v, J w)=B_{r}(v, w)$ so that B_{r} and J are compatible. And also notice that $B_{r}(J v, w)=B_{s}(J v, J w)=B_{s}(v, w)$. Let J^{t} be the transpose of J with respect to B_{r} Then

$$
B_{r}(J v, J w)=B_{r}\left(v, J^{t} J w\right)=B_{r}(v, w)
$$

so $J^{t} J=I$ and $J^{t}=-J$.

B_{r}, B_{s}, J in Coordinates

Let $e \in V$ such that $B_{r}(e, e)=1$, and set $f=J e$, and $e=-J f$. Then

$$
B_{r}(e, e)=1 \quad B_{s}(e, f)=1
$$

Take $V_{1}=\operatorname{span}\{e, f\}$. This is a J-invariant subspace. If we then take

$$
V_{1}^{\perp}=\text { orthocomplement of } V_{1} \text { w.r.t } B_{r}
$$

then for $v \in V_{1}, w \in V_{1}^{\perp}, 0=B_{r}(J v, w)=B_{s}(v, w)$, so V_{1}^{\perp} is the symplectic orthocomplement of V_{1} with respect to B_{s}.

Applying induction we get a decomposition

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}
$$

where $V_{i}=\operatorname{span}\left\{e_{i}, f_{i}\right\}$ such that $e_{1}, f_{1}, \ldots, e_{n}, f_{n}$ is an oriented orthonormal basis of V with respect to B_{r} and a Darboux basis with respect to B_{s}. Note that $J e_{i}=f_{i}$ and $J f_{i}=-e_{i}$

5.0.3 B_{r}, B_{s} and J on $\Lambda^{k}(V)$

$\omega=\sum e_{i} \wedge f_{i}$ is the symplectic element in $\Lambda^{2}(V)$ and $\Omega=\omega^{n} / n!=e_{1} \wedge f_{1} \wedge \cdots \wedge e_{n} \wedge f_{n}$ is the symplectic volume for and Riemannian volume form.

On decomposable elements, $\alpha=v_{1} \wedge \cdots \wedge v_{k}$ and $\beta=w_{1} \wedge \cdots \wedge w_{k}$ and

$$
B_{r}(\alpha, \beta)=\operatorname{det}\left(B_{r}\left(v_{i}, w_{j}\right)\right) \quad B_{s}(\alpha, \beta)=\operatorname{det}\left(B_{s}\left(v_{i}, w_{j}\right)\right)
$$

and we can define

$$
J \alpha=J v_{1} \wedge \cdots \wedge J v_{k}
$$

Notice that

$$
B_{r}(\alpha, \beta)=\operatorname{det}\left(B_{r}\left(v_{i}, w_{j}\right)\right)=\operatorname{det} B_{s}\left(v_{i}, J w_{j}\right)=B_{s}(\alpha, J \beta)
$$

and furthermore, it is easy to check that $B_{r}(J \alpha, J \beta)=B_{r}(\alpha, \beta), B_{s}(J \alpha, J \beta)=B_{s}(\alpha, \beta), J^{2}=(-1)^{k} I d$ and if $J^{t}: \Lambda^{k} \rightarrow \Lambda^{k}$ is the B_{r}-transpose of J, then $J^{t}=(-1)^{k} J$.

The Star Operators

These are $*_{r}$ and $*_{s}$, the Riemannian and symplectic star operators, respectively. Let Ω be the symplectic (and Riemannian) volume form. For $\alpha, \beta \in \Lambda^{k}$ we have

$$
\alpha \wedge *_{r} \beta=B_{r}(\alpha, \beta) \Omega=B_{s}(\alpha, J \beta)=\alpha \wedge *_{s} J \beta
$$

so

Also, notice that

$$
*_{r}=*_{s} J
$$

$$
J \alpha \wedge *_{r} J \beta=B_{r}(J \alpha, J \beta) \Omega=B_{r}(\alpha, \beta) \Omega=\alpha \wedge *_{r} \beta
$$

on the other hand $J \Omega=\Omega$, so

$$
\alpha \wedge *_{r} \beta=B_{r}(\alpha, \beta) \Omega=J \alpha \wedge *_{r} J *_{r} \beta
$$

so $*_{r} J=J *_{r}$ and since $*_{r}=*_{s} J$ we have $J *_{s}=*_{s} J$.

Structure of $\Lambda(V)$

We have a symplectic element $\omega=\sum e_{i} \wedge f_{i} \in \Omega^{2}$. From this, we can define a mapping $L: \Lambda^{k} \rightarrow \Lambda^{k+2}$ given by $\alpha \mapsto \omega \wedge \alpha$. Note that

$$
L J \alpha=\omega \wedge J \alpha=J(\omega \wedge \alpha)=J L \alpha
$$

so that $[J, L]=0$.
Similarly for $L^{t}: \Lambda^{k+2} \rightarrow \Lambda^{k}$, the symplectic transpose given by $L^{t}=*_{s} L *_{s}$. Since $*_{s}, L$ commute with the J map, so does L^{t}, so $\left[J, L^{t}\right]=0$.

Notice that

$$
B_{r}(L \alpha, \beta)=B_{s}(L \alpha, J \beta)=B_{s}\left(\alpha, L^{t} J \beta\right)=B_{s}\left(\alpha, J L^{t} \beta\right)=B_{r}\left(\alpha, L^{t} \beta\right)
$$

so L^{t} is also the Riemannian transpose.
From L, L^{t} we get a representation of $S L(2, \mathbb{R})$ on $\Lambda(V)$ and this representation is J-invariant.

