Lecture 27

Theorem. We can repagenate the sum so that

$$
V=\bigoplus_{i=-N}^{N} V_{i}
$$

where

$$
H=i I d \text { on } V_{i}
$$

(a) $X: V_{i} \rightarrow V_{i+2}$ and $Y: V_{i+2} \rightarrow V_{i}$.
(b) $Y^{i} V_{i} \xrightarrow{\text { cong }} V_{-i}$ is bijective.

Now, recall that we are going to apply this stuff to Hodge Theory. In particular, let $\left(X^{2 n}, \omega\right)$ be a symplectic, compact manifold. Then we define $L: \Omega^{k}(X) \rightarrow \Omega^{k+2}(X)$ given by $\alpha \mapsto \omega \wedge \alpha, *: \Omega^{k} \rightarrow \Omega^{2 n-k}$, $L^{t}: \Omega^{k+2} \rightarrow \Omega^{k}$ given by $L^{t}=* L *$ and we defined $A: \Omega \rightarrow \omega, A=i I d$ on Ω^{n-i}. The Kaehler-Weil identities said that

$$
\left[L^{t}, L\right]=A \quad\left[A, L^{t}\right]=2 L^{t} \quad[A, L]=-2 L
$$

So Ω is a g-module of finite H-type with $X=L^{t}, Y=L$ and $H=A$.
Corollary. The map $L^{k}: \Omega^{n-k} \rightarrow \Omega^{n+k}$ is an isomorphism.
We can apply this to symplectic hodge theory as follows. We know in this case that

$$
\left[d, L^{t}\right]=\delta \quad[\delta, L]=d
$$

Let $\Omega_{\text {harm }}=\{u \in \Omega d u=\delta=0\}$.
Theorem. $\Omega_{\text {harm }}$ is a g-module of Ω.
Corollary. The map $L^{k}: \Omega_{\text {harm }}^{n-k} \rightarrow \Omega_{\text {harm }}^{n+k}$ is bijective.

Hard Lefshetz Theorem

$\omega \in \Omega^{2}, d \omega=0$. Then $[\omega]$ defines a cohomology class $[\omega] \in H_{D R}^{2}(X)=H^{2}(X)$. And in turn we can define a mapping $\gamma: H^{k}(X) \rightarrow H^{k+2}(X)$ by $c \mapsto[\omega] \frown c$.
Theorem. Let X be Kaehler then $\gamma^{k}: H^{n-k}(X) \rightarrow H^{n+k}(X)$ is bijective.
What about the symplectic case? Let $u \in \Omega_{\text {harm }}^{k}$ with $d u=0$. Define a mapping $P_{k}: \Omega_{\text {harm }}^{k} \rightarrow H^{k}(X)$ by $u \mapsto[u]$

Theorem. (Matthieu) Hard Lefshetz holds for X if and only if P_{x} is onto for all k.
Proof. The "only if" part is covered in the supplementary notes. Now the for the "if" part, we use the following diagram

L^{k} is bijective, the vertical arrows are surjective, so γ^{k} is surjective. Poincare duality tells us that dim $H^{n-k}=$ $\operatorname{dim} H^{n+k}$ so γ^{k} is bijective.

Remarks:
(a) "if" condition is automatic for Kaehler manifolds
(b) A consequence of Hard Lefshetz. We know that $H^{2 n}(X) \xrightarrow{\cong} \mathbb{R}$ given by $[u] \mapsto \int_{X} u$ is (by stokes theorem) bijective. Hence one can define a bilinear form on $H^{n-k}(X)$ via

$$
c_{1}, c_{2} \rightarrow \gamma^{k} c_{1} \frown c_{2} \in H^{2 n}(X) \xrightarrow{\cong} \mathbb{R}
$$

By poincare and hard lefshetz this form is non-degenerate, i.e. $\gamma^{k} c_{1} \frown c_{2}=0$ for all c_{2}, then by Poincare $\gamma^{k} c_{1}=0$ which implies that $c_{1}=0$.
A consequence is that for k odd $H^{k}(X)$ is even dimensional.
(c) Thurston showed that there exists lots of compact symplectic manifolds with $\operatorname{dim} H^{1}(X)$ odd, i.e. it doesn't satisfy strong lefshetz.
(d) For any symplectic manifold X, let $H_{s y m p}^{k}(X)=\operatorname{Im}\left(\Omega_{h a r m}^{k} \rightarrow H^{k}(X)\right)$. For symplectic cohomology you do have Hard Lefshetz.

Riemannian Hodge Theory

Let $V=V^{n}$ be a vector space over \mathbb{R}. B is a positive definite inner product on V. Assume V is oriented, then you get $*: \Lambda^{k}(V) \rightarrow \Lambda^{n-k}(V)$. Take v_{1}, \ldots, v_{n} to be an oriented orthonormal basis of V. $I=\left(i_{1}, \ldots, i_{k}\right)$, $i_{1}<\cdots<i_{k}$. I^{c} the complementary multi-index. Then $* v_{I}=\epsilon v_{I^{c}}$ where $\epsilon v_{I} \wedge v_{I^{c}}=v_{1} \wedge \cdots \wedge v_{n}$ (where ϵ is some sign).

Let $X=X^{n}$ be a compact Riemannian manifold. From the Riemannian metric we get B_{p} a positive definite inner product on T_{p}^{*} so B_{p} induces a positive definite inner product on $\Lambda^{k}\left(T_{p}^{*}\right)$.

From these inner products we get the star operator $*_{p}: \Lambda_{p}^{k} \rightarrow \Lambda_{p}^{n-k}$ satisfying $\alpha, \beta \in \Lambda_{p}^{k}, \alpha \wedge * \beta=$ $B_{p}(\alpha, \beta) v_{p}$ where v_{p} is the Riemannian volume form.

Its clear that B_{p} extends \mathbb{C}-linearly to a \mathbb{C}-blinear form on $\Lambda_{p}^{k} \otimes \mathbb{C}$ and $*_{p}$ extends \mathbb{C}-linearly to $\Lambda_{p}^{k} \otimes \mathbb{C}$.
A hermitian inner product on $\Lambda^{k}\left(T_{p}^{*}\right) \otimes \mathbb{C}$ by $(\alpha, \beta)_{p}=B_{p}(\alpha \bar{\beta})$ and $\alpha \wedge * \bar{\beta}:=(\alpha, \beta)_{p} v_{p}$.
Globally, $\Omega^{k}(X)=C^{\infty}\left(\Lambda^{k}\left(T^{*} X\right) \otimes \mathbb{C}\right)$. Define an L^{2} inner-product by $\alpha, \beta \in \Omega^{k}(X)$

$$
\langle\alpha, \beta\rangle=\int_{X}(\alpha, \beta)_{p} v=\int_{X} \alpha \wedge * \bar{\beta}
$$

From $\Omega^{0}(X) \xrightarrow{d} \Omega^{1}(X) \xrightarrow{d} \ldots$ we get an elliptic complex

$$
C^{\infty}(X) \longrightarrow C^{\infty}\left(\Lambda^{1}\left(T^{*} X\right) \otimes \mathbb{C}\right) \longrightarrow \cdots
$$

We have a hermitian inner product on the vector bundles $\Lambda^{k}\left(T^{*} X\right) \otimes \mathbb{C}$, so we can get a transpose

$$
d^{t}: C^{\infty}\left(\Lambda^{k}\left(T^{*} X\right) \otimes \mathbb{C}\right) \rightarrow C^{\infty}\left(\Lambda^{k-1}\left(T^{*} X\right) \otimes \mathbb{C}\right)
$$

and write $d^{t}=\delta$ and think of δ as $\delta: \Omega^{k} \rightarrow \Omega^{k-1}$.
Form the corresponding Laplacian operator $\Delta=d \delta+\delta d$.
Apply the general theory of Elliptic complexes to this case. We conclude that
(a) $\mathcal{H}^{k}=\left\{u \in \Omega^{k}, \Delta u=0\right\}$ is finite dimensional.
(b) $\mathcal{H}^{k}=\left\{u \in \Omega^{k}, d u=\delta u=0\right\}$.
(c) Hodge Decomposition

$$
\Omega^{k}=\left\{(\operatorname{Im} d) \oplus(\operatorname{Im} \delta) \oplus \mathcal{H}^{k}\right\}
$$

(d) The map $\mathcal{H}^{k} \rightarrow H_{D R}^{k}$ is bijective, i.e. every cohomology class has a unqiue harmonic representation.

