Lecture 27

Theorem. We can repagenate the sum so that

$$V = \bigoplus_{i=-N}^{N} V_i$$

where

$$H = iId \ on \ V$$

- (a) $X: V_i \to V_{i+2}$ and $Y: V_{i+2} \to V_i$.
- (b) $Y^i V_i \xrightarrow{cong} V_{-i}$ is bijective.

Now, recall that we are going to apply this stuff to Hodge Theory. In particular, let (X^{2n}, ω) be a symplectic, compact manifold. Then we define $L: \Omega^k(X) \to \Omega^{k+2}(X)$ given by $\alpha \mapsto \omega \wedge \alpha, *: \Omega^k \to \Omega^{2n-k}$, $L^t: \Omega^{k+2} \to \Omega^k$ given by $L^t = *L*$ and we defined $A: \Omega \to \omega, A = iId$ on Ω^{n-i} . The Kaehler-Weil identities said that

 $[L^t, L] = A$ $[A, L^t] = 2L^t$ [A, L] = -2L

So Ω is a **g**-module of finite *H*-type with $X = L^t$, Y = L and H = A.

Corollary. The map $L^k : \Omega^{n-k} \to \Omega^{n+k}$ is an isomorphism.

We can apply this to symplectic hodge theory as follows. We know in this case that

$$[d, L^t] = \delta \qquad [\delta, L] = d$$

Let $\Omega_{harm} = \{ u \in \Omega du = \delta = 0 \}.$

Theorem. Ω_{harm} is a g-module of Ω .

Corollary. The map $L^k: \Omega_{harm}^{n-k} \to \Omega_{harm}^{n+k}$ is bijective.

Hard Lefshetz Theorem

 $\omega \in \Omega^2$, $d\omega = 0$. Then $[\omega]$ defines a cohomology class $[\omega] \in H^2_{DR}(X) = H^2(X)$. And in turn we can define a mapping $\gamma : H^k(X) \to H^{k+2}(X)$ by $c \mapsto [\omega] \frown c$.

Theorem. Let X be Kaehler then $\gamma^k : H^{n-k}(X) \to H^{n+k}(X)$ is bijective.

What about the symplectic case? Let $u \in \Omega_{harm}^k$ with du = 0. Define a mapping $P_k : \Omega_{harm}^k \to H^k(X)$ by $u \mapsto [u]$

Theorem. (Matthieu) Hard Lefshetz holds for X if and only if P_x is onto for all k.

 $\mathit{Proof.}$ The "only if" part is covered in the supplementary notes. Now the for the "if" part, we use the following diagram

 L^k is bijective, the vertical arrows are surjective, so γ^k is surjective. Poincare duality tells us that dim $H^{n-k} = \dim H^{n+k}$ so γ^k is bijective.

Remarks:

(a) "if" condition is automatic for Kaehler manifolds

(b) A consequence of Hard Lefshetz. We know that $H^{2n}(X) \xrightarrow{\cong} \mathbb{R}$ given by $[u] \mapsto \int_X u$ is (by stokes theorem) bijective. Hence one can define a bilinear form on $H^{n-k}(X)$ via

$$c_1, c_2 \to \gamma^k c_1 \frown c_2 \in H^{2n}(X) \xrightarrow{\cong} \mathbb{R}$$

By poincare and hard lefshetz this form is non-degenerate, i.e. $\gamma^k c_1 \frown c_2 = 0$ for all c_2 , then by Poincare $\gamma^k c_1 = 0$ which implies that $c_1 = 0$.

A consequence is that for k odd $H^k(X)$ is even dimensional.

- (c) Thurston showed that there exists lots of compact symplectic manifolds with dim $H^1(X)$ odd, i.e. it doesn't satisfy strong lefshetz.
- (d) For any symplectic manifold X, let $H^k_{symp}(X) = \text{Im}(\Omega^k_{harm} \to H^k(X))$. For symplectic cohomology you **do** have Hard Lefshetz.

Riemannian Hodge Theory

Let $V = V^n$ be a vector space over \mathbb{R} . *B* is a positive definite inner product on *V*. Assume *V* is oriented, then you get $*: \Lambda^k(V) \to \Lambda^{n-k}(V)$. Take v_1, \ldots, v_n to be an oriented orthonormal basis of *V*. $I = (i_1, \ldots, i_k)$, $i_1 < \cdots < i_k$. I^c the complementary multi-index. Then $*v_I = \epsilon v_{I^c}$ where $\epsilon v_I \wedge v_{I^c} = v_1 \wedge \cdots \wedge v_n$ (where ϵ is some sign).

Let $X = X^n$ be a compact Riemannian manifold. From the Riemannian metric we get B_p a positive definite inner product on T_p^* so B_p induces a positive definite inner product on $\Lambda^k(T_p^*)$.

From these inner products we get the star operator $*_p : \Lambda_p^k \to \Lambda_p^{n-k}$ satisfying $\alpha, \beta \in \Lambda_p^k, \alpha \wedge *\beta = B_p(\alpha, \beta)v_p$ where v_p is the Riemannian volume form.

Its clear that B_p extends \mathbb{C} -linearly to a \mathbb{C} -blinear form on $\Lambda_p^k \otimes \mathbb{C}$ and $*_p$ extends \mathbb{C} -linearly to $\Lambda_p^k \otimes \mathbb{C}$. A hermitian inner product on $\Lambda^k(T_p^*) \otimes \mathbb{C}$ by $(\alpha, \beta)_p = B_p(\alpha \ \overline{\beta})$ and $\alpha \wedge *\overline{\beta} := (\alpha, \beta)_p v_p$.

Globally, $\Omega^k(X) = C^{\infty}(\Lambda^k(T^*X) \otimes \mathbb{C})$. Define an L^2 inner-product by $\alpha, \beta \in \Omega^k(X)$

$$\langle \alpha, \beta \rangle = \int_X (\alpha, \beta)_p v = \int_X \alpha \wedge *\bar{\beta}$$

From $\Omega^0(X) \xrightarrow{d} \Omega^1(X) \xrightarrow{d} \dots$ we get an elliptic complex

$$C^{\infty}(X) \longrightarrow C^{\infty}(\Lambda^{1}(T^{*}X) \otimes \mathbb{C}) \longrightarrow \cdots$$

We have a hermitian inner product on the vector bundles $\Lambda^k(T^*X) \otimes \mathbb{C}$, so we can get a transpose

$$d^{t}: C^{\infty}(\Lambda^{k}(T^{*}X) \otimes \mathbb{C}) \to C^{\infty}(\Lambda^{k-1}(T^{*}X) \otimes \mathbb{C})$$

and write $d^t = \delta$ and think of δ as $\delta : \Omega^k \to \Omega^{k-1}$.

Form the corresponding Laplacian operator $\Delta = d\delta + \delta d$.

Apply the general theory of Elliptic complexes to this case. We conclude that

(a) $\mathcal{H}^k = \{ u \in \Omega^k, \Delta u = 0 \}$ is finite dimensional.

- (b) $\mathcal{H}^k = \{ u \in \Omega^k, du = \delta u = 0 \}.$
- (c) Hodge Decomposition

$$\Omega^k = \{(\operatorname{Im} d) \oplus (\operatorname{Im} \delta) \oplus \mathcal{H}^k\}$$

(d) The map $\mathcal{H}^k \to H^k_{DR}$ is bijective, i.e. every cohomology class has a unque harmonic representation.