Lecture 26

Lemma. Take $v \in V$, $Hv = \lambda v$. We claim that $H(Xv) = (\lambda + 2)Xv$.

Proof. (HX - XH)v = 2Xv, so $HXv = \lambda Xv + 2Xv = (\lambda + 2)Xv$.

Lemma. If $Hv = \lambda v$, then

$$[X, Y^k]v = k(\lambda - (k-1))Y^{k-1}v$$

Proof. We proceed by induction. If k = 1 this is just $[X, Y]v = Hv = \lambda v$. This is true. Now we show that if this is true for k, its true for k + 1.

$$\begin{split} [X,Y^{k+1}]v &= XY^{k+1}v - Y^{k+1}Xv \\ &= (XY)Y^kv - (YX)Y^kv + Y(XY^k)v - Y(Y^kXv) \\ &= HY^kv + Y([X,Y^k])v \\ &= (\lambda - 2k)Y^kv + Y(k(\lambda - (k-1))Y^{k-1}v \\ &= ((\lambda - 2k) + k(\lambda - k - 1))Y^kv = (k+1)(\lambda - k)Y^kv \end{split}$$

Definition. V is a cyclic module with generator v if every submodule of V containing v is equal to V itself.

Theorem. If V is a cyclic module of finite H type then $\dim V < \infty$.

Proof. Let v generate V. Then $v = \sum_{i=0}^{N} v_i$ where $v_i \in V_i$. It is enough to prove the theorem for cyclic modules generated by v_i . We can assume without loss of generality that $Hv = \lambda v$.

Now, note that only a finite number of expression $Y^k X^l v$ are non-zero (since X shifts into a different eigenspace, and there are only a finite number of eigenspaces).

By the formula that we just proved, $span\{Y^kX^lv\}$ is a submodule of V containing v.

Fact: Every finite dimensional **g**-module is a direct sum of irreducibles. In particular, every cyclic submodule of V is a direct sum of irreducibles.

Theorem. Every irreducible g-module of finite H type is of the form $V = V_0 \oplus \cdots \oplus V_k$ where dim $V_i = 1$. Moreover, there exists $v_i \in V_i - \{0\}$ such that

$$Hv_{i} = (k - 2i)v_{i}$$

$$Yv_{i} = v_{i+1} \quad i \le k - 1$$

$$Xv_{i} = i(k - (i - 1))v_{i-1} \quad i \ge 1$$

$$Xv_{0} = 0, Yv_{k} = 0$$

Proof. Let $V = V_0 \oplus \cdots \oplus V_n$, and $H = \lambda_i Id$ on V_i and assume that $\lambda_0 > \lambda_1 > \cdots > \lambda_n$. Take $v \in V_0 - \{0\}$. Note that Xv = 0, because $HXv = (\lambda_0 + 2)Xv$ and $\lambda_0 + 2 > \lambda_0$.

Consider $Yv, \ldots, Y^k v \neq 0$, $Y^{k+1}v = 0$, so $HY^i v = (\lambda_0 - 2i)Y^i v$. and

$$XY^{i}v = Y^{i}Xv + i(\lambda - (i-1))Y^{i-1}v = i(\lambda - (i-1))Y^{i-1}v$$

When i = k + 1 we have

$$XY^{k+1}v = 0 = (k+1)(\lambda - k)Y^{k}v$$

but $Y^k v \neq 0$, so it must be that $\lambda = k$. Now just set $v_i = Y^i v$.

Lemma. Let V be a k + 1 dimensional vector space with basis v_0, \ldots, v_k . Then the relations in the above theorem define an irreducible representation of \mathbf{g} on V

Definition. V a g-module, $V = \bigoplus_{i=0}^{N} V_i$ of finite H-type. Then $v \in V$ is **primitive** if

- (a) v is homogenous, (i.e. $v \in V_i$)
- (b) Xv = 0.

Theorem. If v is primitive then the cyclic submodule generated by v is irreducible and Hv = k where k is the dimension of this module.

Proof. $v, Yv, \ldots, Y^k v \neq 0, Y^{k+1} = 0$. Take $v_i = Y^i v$. Check that v_i satisfies the conditions.

Theorem. Every vector $v \in V$ can be written as a finite sum

$$v = \sum Y^l v_l$$

where v_l is primitive.

Proof. This is clearly true if V is irreducible (by the relations). Hence this is true for cyclic modules, because they are direct sums of irreducibles, hence this is true in general. \Box

Corollary. The eigenvalues of H are integers.

Proof. We need to check this for eigenvectors of the form $Y^l v$ where v is primitive. But for v primitive we know the theorem is true, i.e. Hv = kv, $HY^l v = (k-2l)Y^l v$. So write $V = \bigoplus V_r$, H = rId on V_r