Lecture 26

Lemma. Take $v \in V, H v=\lambda v$. We claim that $H(X v)=(\lambda+2) X v$.
Proof. $(H X-X H) v=2 X v$, so $H X v=\lambda X v+2 X v=(\lambda+2) X v$.
Lemma. If $H v=\lambda v$, then

$$
\left[X, Y^{k}\right] v=k(\lambda-(k-1)) Y^{k-1} v
$$

Proof. We proceed by induction. If $k=1$ this is just $[X, Y] v=H v=\lambda v$. This is true.
Now we show that if this is true for k, its true for $k+1$.

$$
\begin{aligned}
{\left[X, Y^{k+1}\right] v } & =X Y^{k+1} v-Y^{k+1} X v \\
& =(X Y) Y^{k} v-(Y X) Y^{k} v+Y\left(X Y^{k}\right) v-Y\left(Y^{k} X v\right) \\
& =H Y^{k} v+Y\left(\left[X, Y^{k}\right]\right) v \\
& =(\lambda-2 k) Y^{k} v+Y\left(k(\lambda-(k-1)) Y^{k-1} v\right. \\
& =((\lambda-2 k)+k(\lambda-k-1)) Y^{k} v=(k+1)(\lambda-k) Y^{k} v
\end{aligned}
$$

Definition. V is a cyclic module with generator v if every submodule of V containing v is equal to V itself.
Theorem. If V is a cyclic module of finite H type then $\operatorname{dim} V<\infty$.
Proof. Let v generate V. Then $v=\sum_{i=0}^{N} v_{i}$ where $v_{i} \in V_{i}$. It is enough to prove the theorem for cyclic modules generated by v_{i}. We can assume without loss of generality that $H v=\lambda v$.

Now, note that only a finite number of expression $Y^{k} X^{l} v$ are non-zero (since X shifts into a different eigenspace, and there are only a finite number of eigenspaces).

By the formula that we just proved, $\operatorname{span}\left\{Y^{k} X^{l} v\right\}$ is a submodule of V containing v.

Fact: Every finite dimensional \mathbf{g}-module is a direct sum of irreducibles.
In particular, every cyclic submodule of V is a direct sum of irreducibles.
Theorem. Every irreducible \mathbf{g}-module of finite H type is of the form $V=V_{0} \oplus \cdots \oplus V_{k}$ where $\operatorname{dim} V_{i}=1$. Moreover, there exists $v_{i} \in V_{i}-\{0\}$ such that

$$
\begin{aligned}
H v_{i} & =(k-2 i) v_{i} \\
Y v_{i} & =v_{i+1} \quad i \leq k-1 \\
X v_{i} & =i(k-(i-1)) v_{i-1} \quad i \geq 1 \\
X v_{0} & =0, Y v_{k}=0
\end{aligned}
$$

Proof. Let $V=V_{0} \oplus \cdots \oplus V_{n}$, and $H=\lambda_{i} I d$ on V_{i} and assume that $\lambda_{0}>\lambda_{1}>\cdots>\lambda_{n}$. Take $v \in V_{0}-\{0\}$. Note that $X v=0$, because $H X v=\left(\lambda_{0}+2\right) X v$ and $\lambda_{0}+2>\lambda_{0}$.

Consider $Y v, \ldots, Y^{k} v \neq 0, Y^{k+1} v=0$, so $H Y^{i} v=\left(\lambda_{0}-2 i\right) Y^{i} v$. and

$$
X Y^{i} v=Y^{i} X v+i(\lambda-(i-1)) Y^{i-1} v=i(\lambda-(i-1)) Y^{i-1} v
$$

When $i=k+1$ we have

$$
X Y^{k+1} v=0=(k+1)(\lambda-k) Y^{k} v
$$

but $Y^{k} v \neq 0$, so it must be that $\lambda=k$. Now just set $v_{i}=Y^{i} v$.

Lemma. Let V be a $k+1$ dimensional vector space with basis v_{0}, \ldots, v_{k}. Then the relations in the above theorem define an irreducible representation of \mathbf{g} on V
Definition. V a g-module, $V=\bigoplus_{i=0}^{N} V_{i}$ of finite H-type. Then $v \in V$ is primitive if
(a) v is homogenous,(i.e. $v \in V_{i}$)
(b) $X v=0$.

Theorem. If v is primitive then the cyclic submodule generated by v is irreducible and $H v=k$ where k is the dimension of this module.
Proof. $v, Y v, \ldots, Y^{k} v \neq 0, Y^{k+1}=0$. Take $v_{i}=Y^{i} v$. Check that v_{i} satisfies the conditions.
Theorem. Every vector $v \in V$ can be written as a finite sum

$$
v=\sum Y^{l} v_{l}
$$

where v_{l} is primitive.
Proof. This is clearly true if V is irreducible (by the relations). Hence this is true for cyclic modules, because they are direct sums of irreducibles, hence this is true in general.

Corollary. The eigenvalues of H are integers.
Proof. We need to check this for eigenvectors of the form $Y^{l} v$ where v is primitive. But for v primitive we know the theorem is true, i.e. $H v=k v, H Y^{l} v=(k-2 l) Y^{l} v$. So write $V=\bigoplus V_{r}, H=r I d$ on V_{r}

