## Lecture 22

Again, $V=V^{n}$ and $B: V \times V \rightarrow \mathbb{R}$ a non-degenerate bilinear form. A few properties of $*$ we have not mentioned yet:

$$
* 1=\Omega \quad * \Omega=1
$$

## Computing the $*$-operator

We now present a couple of applications to computation
(a) $B$ symmetric and positive definite. Let $v_{1}, \ldots, v_{n}$ be an oriented orthonormal basis of $V$. If $I=$ $\left(i_{1}, \ldots, i_{k}\right)$ where $i_{1}<\cdots<i_{k}$ then $v_{I}=v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}$. Let $J=I^{C}$. Then

$$
* v_{I}= \pm v_{J}
$$

where this is postive if $v_{I} \wedge v_{J}=\Omega$ and negative if $v_{I} \wedge v_{J}=-\Omega$.
(b) Let $B$ be symplectic and $V=V^{2 n}$. Then there is a Darboux basis $e_{1}, f_{1}, \ldots, e_{n}, f_{n}$. Give $V$ the symplectic orientation

$$
\Omega=e_{1} \wedge f_{1} \wedge \cdots \wedge e_{n} f_{n}
$$

What does the $*$-operator look like? For $n=1$, i.e. $V=V^{2}$ we have $* 1=e \wedge f, *(e \wedge f)=1 * e=e$ and $* f=f$.
What about $n$ arbitrary? Suppose we have

$$
V=V_{1} \oplus \cdots \oplus V_{n} \quad V_{i}=\operatorname{span}\left\{e_{i}, f_{i}\right\}
$$

then $\Lambda(V)$ is spanned by $\beta_{1} \wedge \cdots \wedge \beta_{n}$ where $\beta_{i} \in \Lambda^{p_{i}}\left(V_{i}\right), 0 \leq p_{i} \leq 2$. Then

$$
*\left(\beta_{1} \wedge \cdots \wedge \beta_{n}\right)=*_{n} \beta_{n} \wedge \cdots \wedge *_{1} \beta_{1}
$$

and we already know that $*$ operator on 2 dimensional space.

## Other Operations

For $u \in V$ we can define an operation $L_{u}: \Lambda^{k} \rightarrow \Lambda^{k+1}$ by $\alpha \mapsto u \wedge \alpha$. We can also define this operations dual: for $v^{*} \in V^{*}, i_{v^{*}}: \Lambda^{k} \rightarrow \Lambda^{k-1}$ the usual interior product.

But because we have a bilinear form we can find $L_{u}^{t}$ and $i_{v^{*}}^{t}$ and since we have $*$ we have other interesting things to do, like conjugate with the $*$-operator:

$$
*^{-1} L_{u} * \quad *^{-1}\left(i_{v^{*}}\right) *
$$

Theorem. For $\alpha \in \Lambda^{p-1}, \beta \in \Lambda^{p}$

$$
B\left(L_{u} \alpha, \beta\right)=B\left(\alpha, L_{u}^{t} \beta\right)
$$

where $L_{u}^{t}=(-1)^{p-1} *^{-1} L_{u} *:=\widetilde{L}_{u}$.
Proof. Begin by noting $L_{u} \alpha \wedge * \beta=B\left(L_{u} \alpha, \beta\right) \Omega$. Now

$$
\begin{aligned}
u \wedge \alpha \wedge * \beta & =(-1)^{p-1} \alpha \wedge u \wedge * \beta=(-1)^{p} \alpha \wedge *\left(*^{-1} u \wedge * \beta\right) \\
& =\alpha \wedge * \widetilde{L}_{u} \beta=B\left(\alpha, \widetilde{L}_{u} \beta\right) \Omega
\end{aligned}
$$

which implies that $\widetilde{L}_{u}=L_{u}^{t}$.

What is this transpose really doing? We know we have a bilinear form $B$ that gives rise to an map $L_{u}: V \rightarrow V^{*}$. Since $B$ is not symmetric, define $B^{\sharp}(u, v)=B(v, u)$, and we get a new map $L_{B^{\sharp}}: V \rightarrow V^{*}$. Then:

Theorem. If $v^{*}=L_{B^{\sharp}} u$, then $L_{u}^{t}=i_{v^{*}}$.
Proof. Let $u_{1}, \ldots, u_{n}$ be a basis of $V$ and let $v_{1}, \ldots, v_{n}$ be a complementary basis of $V$ determined by

$$
B\left(u_{i}, v_{j}\right)=\delta_{i j}
$$

and let $v_{1}^{*}, \ldots, v_{n}^{*}$ be a dual basis of $V^{*}$. Check that $v_{1}^{*}=L_{B^{\sharp}} u_{1}$. Let $I=\left(i_{1}, \ldots, i_{k-1}\right)$ and $J=\left(j_{1}, \ldots, j_{k}\right)$ be multi-indices. We claim that

$$
B\left(L_{u_{1}} u_{I}, v_{J}\right)=B\left(u_{I}, i_{v_{1}^{*}} v_{J}\right)
$$

and that if $j_{1}, \ldots, j_{k}=1$ and $i_{1}, \ldots, i_{k-1}=1$ then both sides are 1 . Otherwise they are 0 .
Theorem. On $\Lambda^{p+1},\left(i_{v^{*}}\right)^{t}=(-1)^{p} *^{-1}\left(i_{v^{*}}\right) *$ and $v^{*}=L_{B} u$.

