Lecture 22

Again, $V = V^n$ and $B : V \times V \to \mathbb{R}$ a non-degenerate bilinear form. A few properties of * we have not mentioned yet:

$$*1 = \Omega \qquad *\Omega = 1$$

Computing the *-operator

We now present a couple of applications to computation

(a) B symmetric and positive definite. Let v_1, \ldots, v_n be an oriented orthonormal basis of V. If $I = (i_1, \ldots, i_k)$ where $i_1 < \cdots < i_k$ then $v_I = v_{i_1} \land \cdots \land v_{i_k}$. Let $J = I^C$. Then

$$*v_I = \pm v_J$$

where this is postive if $v_I \wedge v_J = \Omega$ and negative if $v_I \wedge v_J = -\Omega$.

(b) Let B be symplectic and $V = V^{2n}$. Then there is a Darboux basis $e_1, f_1, \ldots, e_n, f_n$. Give V the symplectic orientation $\Omega = e_1 \wedge f_1 \wedge \cdots \wedge e_n f_n$

What does the *-operator look like? For
$$n = 1$$
, i.e. $V = V^2$ we have $*1 = e \land f, *(e \land f) = 1 * e = e$ and $*f = f$.

What about n arbitrary? Suppose we have

$$V = V_1 \oplus \cdots \oplus V_n$$
 $V_i = span\{e_i, f_i\}$

then $\Lambda(V)$ is spanned by $\beta_1 \wedge \cdots \wedge \beta_n$ where $\beta_i \in \Lambda^{p_i}(V_i), 0 \leq p_i \leq 2$. Then

 $*(\beta_1 \wedge \dots \wedge \beta_n) = *_n \beta_n \wedge \dots \wedge *_1 \beta_1$

and we already know that * operator on 2 dimensional space.

Other Operations

For $u \in V$ we can define an operation $L_u : \Lambda^k \to \Lambda^{k+1}$ by $\alpha \mapsto u \wedge \alpha$. We can also define this operations dual: for $v^* \in V^*$, $i_{v^*} : \Lambda^k \to \Lambda^{k-1}$ the usual interior product.

But because we have a bilinear form we can find L_u^t and $i_{v^*}^t$ and since we have * we have other interesting things to do, like conjugate with the *-operator:

$$*^{-1}L_u * *^{-1}(i_{v^*}) *$$

Theorem. For $\alpha \in \Lambda^{p-1}$, $\beta \in \Lambda^p$

$$B(L_u\alpha,\beta) = B(\alpha, L_u^t\beta)$$

where $L_u^t = (-1)^{p-1} *^{-1} L_u * := \widetilde{L}_u$.

Proof. Begin by noting $L_u \alpha \wedge *\beta = B(L_u \alpha, \beta)\Omega$. Now

$$u \wedge \alpha \wedge *\beta = (-1)^{p-1} \alpha \wedge u \wedge *\beta = (-1)^p \alpha \wedge *(*^{-1}u \wedge *\beta)$$
$$= \alpha \wedge *\widetilde{L}_u \beta = B(\alpha, \widetilde{L}_u \beta)\Omega$$

which implies that $\widetilde{L}_u = L_u^t$.

 \Box

What is this transpose really doing? We know we have a bilinear form B that gives rise to an map $L_u: V \to V^*$. Since B is not symmetric, define $B^{\sharp}(u, v) = B(v, u)$, and we get a new map $L_{B^{\sharp}}: V \to V^*$. Then:

Theorem. If $v^* = L_{B^{\sharp}}u$, then $L_u^t = i_{v^*}$.

Proof. Let u_1, \ldots, u_n be a basis of V and let v_1, \ldots, v_n be a complementary basis of V determined by

$$B(u_i, v_j) = \delta_{ij}$$

and let v_1^*, \ldots, v_n^* be a dual basis of V^* . Check that $v_1^* = L_{B^{\sharp}} u_1$. Let $I = (i_1, \ldots, i_{k-1})$ and $J = (j_1, \ldots, j_k)$ be multi-indices. We claim that

$$B(L_{u_1}u_I, v_J) = B(u_I, i_{v_1^*}v_J)$$

and that if $j_1, \ldots, j_k = 1$ and $i_1, \ldots, i_{k-1} = 1$ then both sides are 1. Otherwise they are 0.

Theorem. On Λ^{p+1} , $(i_{v^*})^t = (-1)^p *^{-1} (i_{v^*}) *$ and $v^* = L_B u$.