Lecture 21

The Hodge *-operator

Let $V=V^{n}$ be an n-dimensional \mathbb{R}-vector space. Let $B: V \times V \rightarrow \mathbb{R}$ be a non-degenerate bilinear form on V (Note that for the momentum we are not assuming anything about this form).

From B one gets a non-degenerate bilinear form $B: \Lambda^{k}(V) \times \lambda^{k}(V) \rightarrow \mathbb{R}$. If $\alpha=v_{1} \wedge \cdots \wedge v_{k}, \beta=$ $w_{1} \wedge \cdots \wedge w_{k}$ then

$$
B(\alpha, \beta)=\operatorname{det}\left(B\left(v_{i}, v_{j}\right)\right)
$$

Alternate definition:
Define a pairing (non-degenerate and bilinear) $\Lambda^{k}(V) \times \Lambda^{k}\left(V^{*}\right) \rightarrow \mathbb{R}$ with $\alpha=v_{1} \wedge \cdots \wedge v_{k}, \beta=f_{1} \wedge \cdots \wedge f_{k}$, $v_{i} \in V, f_{i} \in V^{*}$. Then

$$
\langle\alpha, \beta\rangle=d\left\langle v_{i}, f_{j}\right\rangle
$$

This gives rise to the identification $\Lambda^{k}\left(V^{*}\right) \cong \Lambda^{k}(V)^{*}$.
So $B: V \times V \rightarrow \mathbb{R}$ gives to $L_{B}: V \xrightarrow{\cong} V^{*}$ by $B(u, v)=\left\langle u, L_{B} v\right\rangle$. This can be extended to a map of k-th exterior powers, $L_{B}: \Lambda^{k}(V) \rightarrow \Lambda^{k}\left(V^{*}\right)$, defined by

$$
L_{B}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=L_{B} v_{1} \wedge \cdots \wedge L_{B} v_{k}
$$

and if we have $\alpha, \beta \in \Lambda^{k}(V)$ then $B(\alpha, \beta)=\left\langle\alpha, L_{B} \beta\right\rangle$.
Let us now look at the top dimensional piece of the exterior algebra. $\operatorname{dim} \Lambda^{n}(V)=1$, orient V so that we are dealing with $\Lambda^{k}(V)_{+}$. Then there is a unique $\Omega \in \Lambda^{n}(V)$ such that $B(\Omega, \Omega)=1$.

Theorem. There exists a bijective map $*: \Lambda^{k}(V) \rightarrow \Lambda^{n-k}(V)$ such that for $\alpha, \beta \in \Lambda^{k}(V)$ we have

$$
\alpha \wedge * \beta=B(\alpha, \beta) \Omega
$$

Proof. From Ω we get a map $\Lambda^{n}(V) \xrightarrow{\cong} \mathbb{R}, \lambda \Omega \mapsto \lambda$. So we get a non-degenerate pairing

$$
\Lambda^{k}(V) \times \Lambda^{k}(V) \rightarrow \Lambda^{n}(V) \rightarrow \mathbb{R}
$$

Now we have a mapping $\Lambda^{k}\left(V^{*}\right) \xrightarrow{k} \Lambda^{n-k}(V)$. Define the $*$-operator to be $k \circ L_{B}$.

Multiplicative Properties of *

There are actually almost no multiplicative properties of the $*$-operator, but there are a few things to be said.

Suppose we have a vector space $V^{n}=V_{1}^{n_{1}} \oplus V_{2}^{n_{2}}$ and suppose we have the bilinear form $B=B_{1} \oplus B_{2}$. From this decomposition we can split the exterior powers

$$
\Lambda^{k}(V)=\bigoplus_{r+s=k} \Lambda^{r}\left(V_{1}\right) \otimes \Lambda^{s}\left(V_{2}\right)
$$

If $\alpha_{1}, \beta_{1} \in \Lambda^{r}\left(V_{1}\right)$ and $\alpha_{2}, \beta_{2} \in \Lambda^{r}\left(V_{2}\right)$ then

$$
B\left(\alpha_{1} \wedge \alpha_{2}, \beta_{1} \wedge \beta_{2}\right)=B_{1}\left(\alpha_{1}, \beta_{1}\right) B_{2}\left(\alpha_{2}, \beta_{2}\right)
$$

Theorem. With $\beta_{1} \in \Lambda^{r}\left(V_{1}\right)$ and $\beta_{2} \in \Lambda^{s}\left(V_{2}\right)$ we have

$$
*\left(\beta_{1} \wedge \beta_{2}\right)=(-1)^{\left(n_{1}-r\right) s} *_{1} \beta_{1} \wedge *_{2} \beta_{2}
$$

Proof. $\alpha_{1} \in \Lambda^{r}\left(V_{1}\right), \alpha_{2} \in \Lambda^{s}\left(V_{2}\right)$ with Ω_{1}, Ω_{2} the volume forms on the vector spaces. Then let $\Omega=\Omega_{1} \wedge \Omega_{2}$ be the volume form for $\Lambda^{n}(V)$. Then

$$
\begin{aligned}
\left(\alpha_{1} \wedge \alpha_{2}\right) *\left(\beta_{1} \wedge \beta_{2}\right) & =B\left(\alpha_{1} \wedge \alpha_{2}, \beta_{1} \wedge \beta_{2}\right) \Omega=B_{1}\left(\alpha_{1}, \beta_{1}\right) \Omega_{1} \wedge B\left(\alpha_{2}, \beta_{2}\right) \Omega_{2} \\
& =\left(\alpha_{1} \wedge *_{1} \beta_{1}\right) \wedge\left(\alpha_{2} \wedge *_{2} \beta_{2}\right) \\
& =(-1)^{\left(n_{1}-r\right) s} \alpha_{1} \wedge \alpha_{2} \wedge\left(*_{1} \beta_{1} \wedge *_{2} \beta_{2}\right)
\end{aligned}
$$

