Lecture 20

X a compact manifold, $E^k \to X$, k = 1, ..., N complex vector bundles, $D : C^{\infty}(E^k) \to C^{\infty}(E^{k+1})$ first order differential operator. Consider the following complex, hereafter referred to as (*).

$$\cdots \longrightarrow C^{\infty}(E^k) \xrightarrow{D} C^{\infty}(E^{k+1}) \xrightarrow{D} \cdots$$

(*) is a differential complex if $D^2 = DD = 0$. For $x \in X, \xi \in T_x^*$, we have $\sigma_{\xi} : E_x^k \to E_x^{k+1}$ then we have the symbol $\sigma_{\xi}(D)(x,\xi)$. And

$$0 = \sigma(D^2)(x,\xi) = \sigma(D)(x,\xi)\sigma(D)(x,\xi)$$

so we conclude that $\sigma_{\xi}^2 = 0$. So at every point we get a finite dimensional complex

$$0 \longrightarrow E_x^1 \xrightarrow{\sigma_{\xi}} E_x^2 \xrightarrow{\sigma_{\xi}} \cdots$$

the symbol complex

Definition. (*) is elliptic if the symbol complex is exact for all x and $\xi \in T_x^* - \{0\}$.

Examples

(a) The De Rham complex. For this complex the bundle is

$$E^k: \Lambda^k \otimes \mathbb{C} = \Lambda^k(T^*X) \otimes \mathbb{C}$$

then $C^{\infty}(E^k) = \Omega^k(X)$. The first order operation is the usual exterior derivative $d : C^{\infty}(E^k) \to C^{\infty}(E^{k+1})$. $\sigma_{\xi} = \sigma(d)(x,\xi)$, where $\sigma_{\xi} : \Lambda^k(T^*_x) \otimes \mathbb{C} \to \Lambda^{k+1}(T^*_x) \otimes \mathbb{C}$

Theorem. For $\mu \in \Lambda^k(T_x^*) \otimes \mathbb{C}$, $\sigma_{\xi}\mu = \sqrt{-1}\xi \wedge \mu$.

Proof. $\omega \in \Omega^k(X), \, \omega_x = \mu, \, f \in C^\infty(X), \, df_x = \xi$ then

$$(e^{-itf}de^{ift}\omega)_x = (idf \wedge \omega)_x + (d\omega)_x = (i\xi_x \wedge \mu)t + (d\omega)_x$$

Theorem. The de Rham complex is elliptic

Proof. To do this we have to prove the exactness of the symbol complex:

$$\cdots \longrightarrow \Lambda^k(T_x^*) \xrightarrow{``\wedge\xi"} \Lambda^{k+1}(T_x^*) \xrightarrow{``\wedge\xi"} \cdots$$

To do this let e_1, \ldots, e_n be a basis of T_x^* with $e_1 = \xi$. Then for $\mu \in \Lambda^k(T_x^*)$, $\mu = e_1 \land \alpha + \beta$ where α and β are products just involving e_2, \ldots, e_n (this is not hard to prove).

(b) Let X be complex and let us define a vector bundle

$$E^{k} = \Lambda^{0,k}(T^{*}) \qquad C^{\infty}(E^{k}) = \Omega^{0,k}(X)$$

Take $D = \overline{\partial}$. This is a first order DO,

 $\overline{\partial}: C^{\infty}(E^k) \to C^{\infty}(E^{k+1}), \ \sigma_x i = \sigma(D)(x,\xi), \ \text{now what is this}$

Take $\xi \in T_x^*$, then $\xi = \xi^{1,0} + \xi^{0,1}$ where $\xi^{1,0} \in (T^a s t_x)^{1,0}, \xi^{0,1} \in (T_x^*)^{0,1}$ and $\xi^{1,0} = \overline{\xi}^{0,1}, \xi \neq 0$ then $\xi^{0,1} \neq 0$.

Theorem. For $\mu \in \Lambda^{0,ki}(T_x^*)$, $\sigma_{\xi}(\mu) = \sqrt{-1}\xi^{0,1} \wedge \mu$.

Proof.
$$\omega \in \Omega^{0,k}(X), \ \omega_x = \mu, \ f \in C^{\infty}(X), \ df_x = \xi \text{ then}$$

 $(e^{-itf}\overline{\partial}e^{itf}\omega)_x = (it\overline{\partial}f \wedge \omega)_x t + (\overline{\partial}\omega)_x = it\xi^{0,1} \wedge \mu + \overline{\partial}\omega_x$

Check: For $\xi \neq 0$ the sequence

symbol?

$$\cdots \longrightarrow \Lambda^{0,k}(T_x^*) \xrightarrow{``\wedge \xi^{0,1}"} \Lambda^{0,k+1}(T_x^*) \xrightarrow{\xi^{0,1}"} \cdots$$

is exact. This is basically the same as the earlier proof, when we note that $\Lambda^{0,k}(T_x^*) = \Lambda^k((T_x^*)^{0,1})$. we conclude that the Dolbeault complex is elliptic.

(c) The above argument forks for higher dimensional Dolbeault complexes. If we set

 $E^k = \Lambda^{p,k}(T^*X), \qquad D = \overline{\partial}, \qquad C^\infty(E^k) = \Omega^{p,k}(X)$

it is easy to show that $\sigma(\overline{\partial})(x,\xi) = " \wedge \xi^{0,1}$ "

The Hodge Theorem

Given a general elliptic complex

$$\cdots \xrightarrow{D} C^{\infty}(E^k) \xrightarrow{D} C^{\infty}(E^{k+1}) \xrightarrow{D} \cdots$$

with dx a volume form on X, equip each vector bundle E^k with a Hermitian structure. We then get an L^2 inner product \langle, \rangle_{L^2} on $C^{\infty}(E^k)$. And for each $D: C^{\infty}(E^k) \to C^{\infty}(E^{k+1})$ we get a transpose operator

$$D^t: C^{\infty}(E^{k+1}) \to C^{\infty}(E^k)$$

If for $x \in X$, $\xi \in T_x^*$, $\sigma_{\xi} = \sigma(D)(x,\xi)$ then

$$\sigma(D^t)(x,\xi) = \sigma_x^t$$

So we can get a complex in the other direction, call it $(*)^t$

$$\cdots \xrightarrow{D^t} C^{\infty}(E^k) \xrightarrow{D^t} C^{\infty}(E^{k-1}) \xrightarrow{D^t} \cdots$$

and since $0 = (D^r)^t = (DD)^t = D^t D^t = (D^t)^2$ we have that $(*)^t$ is a differential complex. Also, $\sigma(D^t)(x,\xi) = \sigma_{\xi} = \sigma(D)(x,\xi)^t$. For x and $\xi \in T_x^* - \{0\}$ the symbol complex of D^t is

$$0 \longrightarrow E_x^N \xrightarrow{\sigma_{\xi}^t} E_x^{N-1} \xrightarrow{\sigma_{\xi}^t} \cdots$$

The transpose of the symbol complex for D. So (*) elliptic implies that $(*)^t$ is elliptic.

Definition. The harmonic space for (*) is

$$\mathcal{H}^k = \{s \in C^\infty(E^k), Ds = D^t s = 0\}$$

Theorem (Hodge Decomposition Theorem). We have two propositions

- (a) For all k, \mathcal{H}^k is finite dimensional.
- (b) Every element u of $C^{\infty}(E^k)$ can be written uniquely as a sum $u_1 + u_2 + u_3$ where $u_1 \in \text{Im}(D)$, $u_2 \in \text{Im}(D^t)$, $u_3 \in \mathcal{H}^k$

Before we prove this we'll do a little preliminary work. Let

$$E = \bigoplus_{k=1}^{N} E^k$$

Then consider the operator

$$D + D^t : C^{\infty}(E) \to C^{\infty}(E)$$

<u>Check</u>: This is elliptic.

Proof. Consider $Q = (D + D^t)^2$. It suffices to show that Q is elliptic.

$$Q = D^2 + DD^t + D^t D + (D^t)^2$$

but the two end terms are 0. So

$$Q = DD^t + D^t D$$

Note that Q sends $C^{\infty}(E^k)$ to $C^{\infty}(E^k)$, so Q behaves nicer than $D + D^t$. So now we want to show that Q is elliptic.

Let $x, \xi \in T_x^* - \{0\}$. Then

$$\sigma(Q)(x,\xi) = \sigma(DD^t)(x,\xi) + \sigma(D^tD)(x,\xi) = \sigma_x^t \xi_\xi + \sigma_\xi \sigma_\xi^t$$

(where $\sigma_{\xi} = \sigma(D)(x, \xi)$.

Suppose $v \in E_x^k$ and $\sigma(Q)(x,\xi)v = 0$ (i.e. it fails to be bijective). Then

$$((\sigma_{\xi}^{t}\sigma_{\xi} + \sigma_{\xi}\sigma_{\xi}^{t})v, v) = 0 = (\sigma_{\xi}v, \sigma_{\xi}v)_{x} + (\sigma_{\xi}^{t}v, \sigma_{\xi}^{t}v) = 0$$

which implies that $\sigma_{\xi}v = 0$ and $\sigma_{\xi}^{t}v = 0$. Now $\sigma_{\xi} = 0$ implies that $v \in \operatorname{Im} \sigma_{\xi} : E_{x}^{k-1} \to E_{x}^{k}$ by exactness. We know that $\operatorname{Im} \sigma_{\xi} \perp \ker \sigma_{\xi}^{t}$, but $v \in \ker \sigma_{\xi}^{t}$, so $v \perp v$ implies that v = 0.

So Q is elliptic and thus $(D + D^t)$ is elliptic.

Lemma. $\mathcal{H}^k = \ker Q.$

Proof. We want to show $\mathcal{H}^k \subseteq \ker Q$. The other direction is easy. Let $u \in \ker Q$. Then

$$\langle DD^t u + D^t Du, u \rangle = 0 = \langle D^t u, D^t u \rangle + \langle Du, Du \rangle = 0$$

This implies that $D^t u = Du = 0$, so $u \in \mathcal{H}^k$.

Proof of Hodge Decomposition. By the Fredholm theorem every element $u \in C^{\infty}(E^k)$ is of the form $u = v_1 + v_2$ where $v_1 \in \text{Im}(Q)$ and $v_2 \in \ker Q$. $v_2 \in \ker Q$ implies that $v_2 \in \mathcal{H}^k$, $v_1 \in \text{Im}(Q)$ implies that $v_1 = Qw = D(D^tw) + D^t(Dw)$. Choose $u_1 = DD^tw, u_2 = D^tDw$ and $v_2 = u_3$.

Left as an exercise: Check that $u = u_1 + u_2 + u_3$ is unique. <u>Hint</u>: ker $D \perp \text{Im } D^t$ and ker $D^t \perp \text{Im } D$. Then the space Im(D), $\text{Im}(D^t)$ and \mathcal{H} are all mutually perpendicular.