Lecture 20

X a compact manifold, $E^{k} \rightarrow X, k=1, \ldots, N$ complex vector bundles, $D: C^{\infty}\left(E^{k}\right) \rightarrow C^{\infty}\left(E^{k+1}\right)$ first order differential operator. Consider the following complex, hereafter referred to as $(*)$.

$$
\cdots \longrightarrow C^{\infty}\left(E^{k}\right) \xrightarrow{D} C^{\infty}\left(E^{k+1}\right) \xrightarrow{D} \cdots
$$

$(*)$ is a differential complex if $D^{2}=D D=0$.
For $x \in X, \xi \in T_{x}^{*}$, we have $\sigma_{\xi}: E_{x}^{k} \rightarrow E_{x}^{k+1}$ then we have the symbol $\sigma_{\xi}(D)(x, \xi)$. And

$$
0=\sigma\left(D^{2}\right)(x, \xi)=\sigma(D)(x, \xi) \sigma(D)(x, \xi)
$$

so we conclude that $\sigma_{\xi}^{2}=0$. So at every point we get a finite dimensional complex

$$
0 \longrightarrow E_{x}^{1} \xrightarrow{\sigma_{\xi}} E_{x}^{2} \xrightarrow{\sigma_{\xi}} \cdots
$$

the symbol complex
Definition. (*) is elliptic if the symbol complex is exact for all x and $\xi \in T_{x}^{*}-\{0\}$.

Examples

(a) The De Rham complex. For this complex the bundle is

$$
E^{k}: \Lambda^{k} \otimes \mathbb{C}=\Lambda^{k}\left(T^{*} X\right) \otimes \mathbb{C}
$$

then $C^{\infty}\left(E^{k}\right)=\Omega^{k}(X)$. The first order operation is the usual exterior derivative $d: C^{\infty}\left(E^{k}\right) \rightarrow$ $C^{\infty}\left(E^{k+1}\right) . \sigma_{\xi}=\sigma(d)(x, \xi)$, where $\sigma_{\xi}: \Lambda^{k}\left(T_{x}^{*}\right) \otimes \mathbb{C} \rightarrow \Lambda^{k+1}\left(T_{x}^{*}\right) \otimes \mathbb{C}$

Theorem. For $\mu \in \Lambda^{k}\left(T_{x}^{*}\right) \otimes \mathbb{C}, \sigma_{\xi} \mu=\sqrt{-1} \xi \wedge \mu$.
Proof. $\omega \in \Omega^{k}(X), \omega_{x}=\mu, f \in C^{\infty}(X), d f_{x}=\xi$ then

$$
\left(e^{-i t f} d e^{i f t} \omega\right)_{x}=(i d f \wedge \omega)_{x}+(d \omega)_{x}=\left(i \xi_{x} \wedge \mu\right) t+(d \omega)_{x}
$$

Theorem. The de Rham complex is elliptic
Proof. To do this we have to prove the exactness of the symbol complex:

$$
\cdots \longrightarrow \Lambda^{k}\left(T_{x}^{*}\right) \xrightarrow{" \wedge \xi "} \Lambda^{k+1}\left(T_{x}^{*}\right) \xrightarrow{" \wedge \xi "} \cdots
$$

To do this let e_{1}, \ldots, e_{n} be a basis of T_{x}^{*} with $e_{1}=\xi$. Then for $\mu \in \Lambda^{k}\left(T_{x}^{*}\right), \mu=e_{1} \wedge \alpha+\beta$ where α and β are products just involving e_{2}, \ldots, e_{n} (this is not hard to prove).
(b) Let X be complex and let us define a vector bundle

$$
E^{k}=\Lambda^{0, k}\left(T^{*}\right) \quad C^{\infty}\left(E^{k}\right)=\Omega^{0, k}(X)
$$

Take $D=\bar{\partial}$. This is a first order DO,

$$
\bar{\partial}: C^{\infty}\left(E^{k}\right) \rightarrow C^{\infty}\left(E^{k+1}\right), \sigma_{x} i=\sigma(D)(x, \xi), \text { now what is this }
$$

symbol?
Take $\xi \in T_{x}^{*}$, then $\xi=\xi^{1,0}+\xi^{0,1}$ where $\xi^{1,0} \in\left(T^{a} s t_{x}\right)^{1,0}, \xi^{0,1} \in\left(T_{x}^{*}\right)^{0,1}$ and $\xi^{1,0}=\bar{\xi}^{0,1}, \xi \neq 0$ then $\xi^{0,1} \neq 0$.

Theorem. For $\mu \in \Lambda^{0, k i}\left(T_{x}^{*}\right), \sigma_{\xi}(\mu)=\sqrt{-1} \xi^{0,1} \wedge \mu$.
Proof. $\omega \in \Omega^{0, k}(X), \omega_{x}=\mu, f \in C^{\infty}(X), d f_{x}=\xi$ then

$$
\left(e^{-i t f} \bar{\partial} e^{i t f} \omega\right)_{x}=(i t \bar{\partial} f \wedge \omega)_{x} t+(\bar{\partial} \omega)_{x}=i t \xi^{0,1} \wedge \mu+\bar{\partial} \omega_{x}
$$

Check: For $\xi \neq 0$ the sequence

$$
\cdots \longrightarrow \Lambda^{0, k}\left(T_{x}^{*}\right) \xrightarrow{" \wedge \xi^{0,1},} \Lambda^{0, k+1}\left(T_{x}^{*}\right) \xrightarrow{"} \stackrel{\xi^{0,1},}{\longrightarrow} \cdots
$$

is exact. This is basically the same as the earlier proof, when we note that $\Lambda^{0, k}\left(T_{x}^{*}\right)=\Lambda^{k}\left(\left(T_{x}^{*}\right)^{0,1}\right)$. we conclude that the Dolbeault complex is elliptic.
(c) The above argument forks for higher dimensional Dolbeault complexes. If we set

$$
E^{k}=\Lambda^{p, k}\left(T^{*} X\right), \quad D=\bar{\partial}, \quad C^{\infty}\left(E^{k}\right)=\Omega^{p, k}(X)
$$

it is easy to show that $\sigma(\bar{\partial})(x, \xi)=" \wedge \xi^{0,1 "}$

The Hodge Theorem

Given a general elliptic complex

$$
\cdots \xrightarrow{D} C^{\infty}\left(E^{k}\right) \xrightarrow{D} C^{\infty}\left(E^{k+1}\right) \xrightarrow{D} \cdots
$$

with $d x$ a volume form on X, equip each vector bundle E^{k} with a Hermitian structure. We then get an L^{2} inner product $\langle,\rangle_{L^{2}}$ on $C^{\infty}\left(E^{k}\right)$. And for each $D: C^{\infty}\left(E^{k}\right) \rightarrow C^{\infty}\left(E^{k+1}\right)$ we get a transpose operator

$$
D^{t}: C^{\infty}\left(E^{k+1}\right) \rightarrow C^{\infty}\left(E^{k}\right)
$$

If for $x \in X, \xi \in T_{x}^{*}, \sigma_{\xi}=\sigma(D)(x, \xi)$ then

$$
\sigma\left(D^{t}\right)(x, \xi)=\sigma_{x}^{t}
$$

So we can get a complex in the other direction, call it $(*)^{t}$

$$
\cdots \xrightarrow{D^{t}} C^{\infty}\left(E^{k}\right) \xrightarrow{D^{t}} C^{\infty}\left(E^{k-1}\right) \xrightarrow{D^{t}} \cdots
$$

and since $0=\left(D^{r}\right)^{t}=(D D)^{t}=D^{t} D^{t}=\left(D^{t}\right)^{2}$ we have that $(*)^{t}$ is a differential complex.
Also, $\sigma\left(D^{t}\right)(x, \xi)=\sigma_{\xi}=\sigma(D)(x, \xi)^{t}$. For x and $\xi \in T_{x}^{*}-\{0\}$ the symbol complex of D^{t} is

$$
0 \longrightarrow E_{x}^{N} \xrightarrow{\sigma_{\xi}^{t}} E_{x}^{N-1} \xrightarrow{\sigma_{\xi}^{t}} \cdots
$$

The transpose of the symbol complex for D. So $(*)$ elliptic implies that $(*)^{t}$ is elliptic.
Definition. The harmonic space for $(*)$ is

$$
\mathcal{H}^{k}=\left\{s \in C^{\infty}\left(E^{k}\right), D s=D^{t} s=0\right\}
$$

Theorem (Hodge Decomposition Theorem). We have two propositions
(a) For all k, \mathcal{H}^{k} is finite dimensional.
(b) Every element u of $C^{\infty}\left(E^{k}\right)$ can be written uniquely as a sum $u_{1}+u_{2}+u_{3}$ where $u_{1} \in \operatorname{Im}(D)$, $u_{2} \in \operatorname{Im}\left(D^{t}\right), u_{3} \in \mathcal{H}^{k}$

Before we prove this we'll do a little preliminary work. Let

$$
E=\bigoplus_{k=1}^{N} E^{k}
$$

Then consider the operator

$$
D+D^{t}: C^{\infty}(E) \rightarrow C^{\infty}(E)
$$

Check: This is elliptic.
Proof. Consider $Q=\left(D+D^{t}\right)^{2}$. It suffices to show that Q is elliptic.

$$
Q=D^{2}+D D^{t}+D^{t} D+\left(D^{t}\right)^{2}
$$

but the two end terms are 0 . So

$$
Q=D D^{t}+D^{t} D
$$

Note that Q sends $C^{\infty}\left(E^{k}\right)$ to $C^{\infty}\left(E^{k}\right)$, so Q behaves nicer than $D+D^{t}$. So now we want to show that Q is elliptic.

Let $x, \xi \in T_{x}^{*}-\{0\}$. Then

$$
\sigma(Q)(x, \xi)=\sigma\left(D D^{t}\right)(x, \xi)+\sigma\left(D^{t} D\right)(x, \xi)=\sigma_{x}^{t} \xi_{\xi}+\sigma_{\xi} \sigma_{\xi}^{t}
$$

(where $\sigma_{\xi}=\sigma(D)(x, \xi)$.
Suppose $v \in E_{x}^{k}$ and $\sigma(Q)(x, \xi) v=0$ (i.e. it fails to be bijective). Then

$$
\left(\left(\sigma_{\xi}^{t} \sigma_{\xi}+\sigma_{\xi} \sigma_{\xi}^{t}\right) v, v\right)=0=\left(\sigma_{\xi} v, \sigma_{\xi} v\right)_{x}+\left(\sigma_{\xi}^{t} v, \sigma_{\xi}^{t} v\right)=0
$$

which implies that $\sigma_{\xi} v=0$ and $\sigma_{\xi}^{t} v=0$. Now $\sigma_{\xi}=0$ implies that $v \in \operatorname{Im} \sigma_{\xi}: E_{x}^{k-1} \rightarrow E_{x}^{k}$ by exactness. We know that $\operatorname{Im} \sigma_{\xi} \perp \operatorname{ker} \sigma_{\xi}^{t}$, but $v \in \operatorname{ker} \sigma_{\xi}^{t}$, so $v \perp v$ implies that $v=0$.

So Q is elliptic and thus $\left(D+D^{t}\right)$ is elliptic.
Lemma. $\mathcal{H}^{k}=\operatorname{ker} Q$.

Proof. We want to show $\mathcal{H}^{k} \subseteq \operatorname{ker} Q$. The other direction is easy. Let $u \in \operatorname{ker} Q$. Then

$$
\left\langle D D^{t} u+D^{t} D u, u\right\rangle=0=\left\langle D^{t} u, D^{t} u\right\rangle+\langle D u, D u\rangle=0
$$

This implies that $D^{t} u=D u=0$, so $u \in \mathcal{H}^{k}$.
Proof of Hodge Decomposition. By the Fredholm theorem every element $u \in C^{\infty}\left(E^{k}\right)$ is of the form $u=$ $v_{1}+v_{2}$ where $v_{1} \in \operatorname{Im}(Q)$ and $v_{2} \in \operatorname{ker} Q . v_{2} \in \operatorname{ker} Q$ implies that $v_{2} \in \mathcal{H}^{k}, v_{1} \in \operatorname{Im} Q$ implies that $v_{1}=Q w=D\left(D^{t} w\right)+D^{t}(D w)$. Choose $u_{1}=D D^{t} w, u_{2}=D^{t} D w$ and $v_{2}=u_{3}$.

Left as an exercise: Check that $u=u_{1}+u_{2}+u_{3}$ is unique. Hint: $\operatorname{ker} D \perp \operatorname{Im} D^{t}$ and $\operatorname{ker} D^{t} \perp \operatorname{Im} D$. Then the space $\operatorname{Im}(D), \operatorname{Im}\left(D^{t}\right)$ and \mathcal{H} are all mutually perpendicular.

