Chapter 5

Hodge Theory

Lecture 19

(First see notes on Elliptic operators)

Let X be a compact manifold. We will show that Section 7 of the notes on Elliptic operators works for elliptic operators on vector bundles.

We'll be working with the basic vector bundles $TX \otimes \mathbb{C}$, $T^*X \otimes \mathbb{C}$, $\Lambda^1(T^*X) \otimes \mathbb{C}$ etc. Let review the basic facts about vector bundle theory. $E \to X$ is a rank k (complex) vector bundle then given U open in X we define $E_U = E \mid_U$. Given $p \in U$ there exists an open set $U \ni p$ and a vector bundle isomorphism such that

Notation. $C^{\infty}(E)$ denotes the C^{∞} sections of E.

Suppose we have $E^i \to X$, i = 1, 2 vector bundles of rank k_i and suppose we have an operator P: $C^{\infty}(E^1) \to C^{\infty}(E^2).$

Definition. P is an m**th order differential operator** if

- (a) P is local. That is for every open set $U \subseteq X$ there exists a linear operator $P_U : C^{\infty}(E_U^1) \to C^{\infty}(E_U^2)$ such that $i_U^* P = P_U i_U^*$.
- (b) If γ_U^i , i = 1, 2 are local trivializations of the vector bundle E^i over U then the operator P_U^{\sharp} in the diagram below is an *m*th order differential operator

$$C^{\infty}(E_{U}^{1}) \xrightarrow{P_{U}} C^{\infty}(E_{U}^{2})$$

$$\gamma_{U}^{1} \downarrow \cong \qquad \cong \downarrow \gamma_{U}^{2}$$

$$C^{\infty}(U, \mathbb{C}^{k_{1}}) \xrightarrow{P_{U}^{\sharp}} C^{\infty}(U, \mathbb{C}^{k_{2}})$$

Check: This is independent of choices of trivializations.

Let $p \in U$. From γ_U^i , i = 1, 2 we get a diagram (with $\xi \in T_p^*$)

$$\begin{array}{ccc} E_p^1 & \xrightarrow{\sigma_{\xi}} & E_p^2 & & \sigma_{\xi}^{\sharp} = \sigma(P_U^{\sharp})(p,\xi) \\ \cong & & & \\ \cong & & & \\ \mathbb{C}^{k_1} & \xrightarrow{\sigma_{\xi}^{\sharp}} & \mathbb{C}^{k_2} \end{array}$$

Definition. $\sigma_{\xi} = \sigma(P)(p,\xi)$

Check that this is independent of trivialization. $f \in C^{\infty}(U), s \in C^{\infty}(E_U)$. Then

$$(e^{-itf}Pe^{itf})(p) = t^m \sigma(P)(p,\xi)s(p) + O(t^{m-1})$$

where $\xi = df_p$.

Definition. P is elliptic if $k_1 = k_2$ and for every p and $\xi \neq 0$ in T_pX , then $\sigma(P)(p,\xi) : E_p^1 \to E_p^2$ is bijective.

5.0.1 Smoothing Operators on Vector Bundles

We have bundles $E^i \to X$. Form a bundle $\operatorname{Hom}(E^1, E^2) \to X \times X$ by defining that at (x, y) the fiber of this bundle is $\operatorname{Hom}(E^1_x, E^2_y)$. In addition lets let dx be the volume form on X.

Let $K \in C^{\infty}(\operatorname{Hom}(E^1, E^2))$ and define $T_K : C^{\infty}(E^1) \to C^{\infty}(E^2)$, with $f \in C^{\infty}(E^1)$ by

$$T_K f(y) = \int K(x, y) f(x) dx$$

What does this mean? By definition $f(x) \in E_x^1$ and $K(x,y) : E_x^1 \to E_y^2$, so $(K(x,y)f(x)) \in E_y^2$. Thus it makes perfect sense to do the integration in the definition.

Theorem. $P: C^{\infty}(E^1) \to C^{\infty}(E^2)$ is an *m*th order elliptic differential operator, then there exists an "*m*th order ΨDO ", $Q: C^{\infty}(E^2) \to C^{\infty}(E^1)$ such that

PQ - I

is smoothing.

Proof. Just as proof outlined in notes with U_i, ρ_i, γ_i . But make sure that E^1, E^2 are locally trivial over U_i , i.e. on $U_i, P_{U_i} \cong P_{U_i}^{\sharp}$, so $P_{U_i}^{\sharp}$ is an elliptic system.

5.0.2 Fredholm Theory in the Vector Bundle Setting

Let $E \to X$ be a complex vector bundle. Then a hermitian inner product on E is a smooth function $X \ni p \to (,)_p$ where $(,)_p$ is a Hermitian inner product on E_p .

If X is compact with $s_1, s_2 \in C^{\infty}(E)$ then we can make this into a compact pre-Hilbert space by defining an L^2 inner product

$$\langle s_1, s_2 \rangle = \int (s_1(x), s_2(x)) dx$$

Lemma. Given $p \in X$, there exists a neighborhood U of p and a Hermitian trivialization of E_U

for $p \in U$, $E_p \cong \mathbb{C}^k$ and γ_U hermitian if $E_p \cong \mathbb{C}^k$ is an isomorphism of hermitian vector spaces.

Proof. This is just Graham-Schmidt

Theorem. $E^i \to X$, i = 1, 2 Hermitian vector bundles and $P: C^{\infty}(E^1) \to C^{\infty}(E^2)$ an mth order DO, then there exists a unique mth order DO, $P^t: C^{\infty}(E^2) \to C^{\infty}(E^1)$ such that for $f \in C^{\infty}(E^1)$, $g \in C^{\infty}(E^2)$

$$\langle Pf,g\rangle_{L^2} = \langle f,P^tg\rangle_{L^2}$$

Proof. (Using the usual mantra: local existence, local uniqueness implies global existence global uniqueness). So we'll first prove local existence. Let U be open and γ_U^1 , γ_U^2 hermitian trivialization of E_U^1 , E_U^2 . $P \iff P_U^{\sharp}$, $P_U^{\sharp}: C^{\infty}(U, \mathbb{C}^{k_1}) \to C^{\infty}(U, \mathbb{C}^{k_2}). \text{ Then } P_U^{\sharp} = [P_{ij}], P_{ij}: C^{\infty}(U) \to C^{\infty}(U), 1 \le i \le k_2, 1 \le j \le k_1.$ Set $(P_U^t)^{\sharp} = [P_{ji}^t], (P_U^t)^{\sharp} \rightsquigarrow P_U^t. \text{ Then } P_U^t: C^{\infty}(E_U^2) \to C^{\infty}(E_U^1).$

We leave the read to check that if $f \in C_0^{\infty}(E_U^1)$, $g \in C_0^{\infty}(E_U^2)$ then

$$\langle P_U f, g \rangle = \langle f, P_U^t g \rangle$$

This is local existence. Local uniqueness is trivial. This all implies global existence.

Theorem (Main Theorem). X compact, $E^i \rightarrow X$, i = 1, 2 hermitian bundles of rank k. And P : $C^{\infty}(E^1) \to C^{\infty}(E^2)$ an *m* order elliptic DO then

- (a) ker P is finite dimensional
- (b) $f \in \text{Im } P$ if and only if $\langle f, g \rangle = 0$ for all $g \in \ker P^t$.

Proof. The proof is implied by existence of right inverses for P modulo smoothing and the Fredholm Theorem for I - T when $T : C^{\infty}(E^1) \to C^{\infty}(E^2)$.