Lecture 18

4.5 Pseudodifferential operators on T^{n}

In this section we will prove Theorem 4.2 for elliptic operators on T^{n}. Here's a road map to help you navigate this section. $\S 4.5 .1$ is a succinct summary of the material in $\S 4$. Sections 4.5.2, 4.5.3 and 4.5.4 are a brief account of the theory of pseudodifferential operators on T^{n} and the symbolic calculus that's involved in this theory. In $\S 4.5 .5$ and 4.5 .6 we prove that an elliptic operator on T^{n} is right invertible modulo smoothing operators (and that its inverse is a pseudodifferential operator). Finally, in §4.5.7, we prove that pseudodifferential operators have a property called "pseudolocality" which makes them behave in some ways like differential operators (and which will enable us to extend the results of this section from T^{n} to arbitrary compact manifolds).

Some notation which will be useful below: for $a \in \mathbb{R}^{n}$ let

$$
\langle a\rangle=\left(|a|^{2}+1\right)^{\frac{1}{2}}
$$

Thus

$$
|a| \leq\langle a\rangle
$$

and for $|a| \geq 1$

$$
\langle a\rangle \leq 2|a|
$$

4.5.1 The Fourier inversion formula

Given $f \in \mathcal{C}^{\infty}\left(T^{n}\right)$, let $c_{k}(f)=\left\langle f, e^{i k x}\right\rangle$. Then:

1) $c_{k}\left(D^{\alpha f}\right)=k^{\alpha} c_{k}(f)$.
2) $\left|c_{k}(f)\right| \leq C_{r}\langle k\rangle^{-r}$ for all r.
3) $\sum c_{k}(f) e^{i k x}=f$.

Let S be the space of functions,

$$
g: \mathbb{Z}^{n} \rightarrow \mathbb{C}
$$

satisfying

$$
|g(k)| \leq C_{r}\langle k\rangle^{-r}
$$

for all r. Then the map

$$
F: \mathcal{C}^{\infty}\left(T^{n}\right) \rightarrow S, \quad F f(k)=c_{k}(f)
$$

is bijective and its inverse is the map,

$$
g \in S \rightarrow \sum g(k) e^{i k x}
$$

4.5.2 Symbols

A function $a: T^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{C}$ is an \mathcal{S}^{m} if, for all multi-indices, α and β,

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{\xi}^{\beta}\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-|\beta|} \tag{5.2.1}
\end{equation*}
$$

Examples

1) $a(x, \xi)=\sum_{|\alpha| \leq m} a_{\alpha}(x) \xi^{\alpha}, a_{\alpha} \in \mathcal{C}^{\infty}\left(T^{n}\right)$.
2) $\langle\xi\rangle^{m}$.
3) $a \in \mathcal{S}^{\ell}$ and $b \in \mathcal{S}^{m} \Rightarrow a b \in S^{\ell+m}$.
4) $a \in \mathcal{S}^{m} \Rightarrow D_{x}^{\alpha} D_{\xi}^{\beta} a \in \mathcal{S}^{m-|\beta|}$.

The asymptotic summation theorem

Given $b_{i} \in \mathcal{S}^{m-i}, i=0,1, \ldots$, there exists a $b \in \mathcal{S}^{m}$ such that

$$
\begin{equation*}
b-\sum_{j<i} b_{j} \in \mathcal{S}^{m-i} \tag{5.2.2}
\end{equation*}
$$

Proof. Step 1. Let $\ell=m+\epsilon, \epsilon>0$. Then

$$
\left|b_{i}(x, \xi)\right|<C_{i}\langle\xi\rangle^{m-i}=\frac{c_{i}\langle\xi\rangle^{\ell-i}}{\langle\xi\rangle^{\epsilon}}
$$

Thus, for some λ_{i},

$$
\left\lvert\, b_{i}(x, \xi)<\frac{1}{2^{i}}\langle\xi\rangle^{\ell-i}\right.
$$

for $|\xi|>\lambda_{i}$. We can assume that $\lambda_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$. Let $\rho \in \mathcal{C}^{\infty}(\mathbb{R})$ be bounded between 0 and 1 and satisfy $\rho(t)=0$ for $t<1$ and $\rho(t)=1$ for $t>2$. Let

$$
\begin{equation*}
b=\sum \rho\left(\frac{|\xi|}{\lambda_{i}}\right) b_{i}(x, \xi) \tag{5.2.3}
\end{equation*}
$$

Then b is in $\mathcal{C}^{\infty}\left(T^{n} \times \mathbb{R}^{n}\right)$ since, on any compact subset, only a finite number of summands are non-zero. Moreover, $b-\sum_{j<i} b_{j}$ is equal to:

$$
\sum_{j<i}\left(\rho\left(\frac{|\xi|}{\lambda_{j}}\right)-1\right) b_{j}+b_{i}+\sum_{j>i} \rho\left(\frac{|\xi|}{\lambda_{j}}\right) b_{j}
$$

The first summand is compactly supported, the second summand is in \mathcal{S}^{m-1} and the third summand is bounded from above by

$$
\sum_{k>i} \frac{1}{2^{k}}\langle\xi\rangle^{\ell-k}
$$

which is less than $\langle\xi\rangle^{\ell-(i+1)}$ and hence, for $\epsilon<1$, less than $\langle\xi\rangle^{m-i}$.
Step 2. For $|\alpha|+|\beta| \leq N$ choose λ_{i} so that

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} b_{i}(x, \xi)\right| \leq \frac{1}{2^{i}}\langle\xi\rangle^{\ell-i-|\beta|}
$$

for $\lambda_{i}<|\xi|$. Then the same argument as above implies that

$$
\begin{equation*}
D_{x}^{\alpha} D_{\xi}^{\beta}\left(b-\sum_{j, i} b_{j}\right) \leq C_{N}\langle\xi\rangle^{m-i-|\beta|} \tag{5.2.4}
\end{equation*}
$$

for $|\alpha|+|\beta| \leq N$.
Step 3. The sequence of λ_{i} 's in step 2 depends on N. To indicate this dependence let's denote this sequence by $\lambda_{i, N}, i=0,1, \ldots$. We can, by induction, assume that for all $i, \lambda_{i, N} \leq \lambda_{i, N+1}$. Now apply the Cantor diagonal process to this collection of sequences, i.e., let $\lambda_{i}=\lambda_{i, i}$. Then b has the property (5.2.4) for all N.

We will denote the fact that b has the property (5.2.2) by writing

$$
\begin{equation*}
b \sim \sum b_{i} \tag{5.2.5}
\end{equation*}
$$

The symbol, b, is not unique, however, if $b \sim \sum b_{i}$ and $b^{\prime} \sim \sum b_{i}, b-b^{\prime}$ is in the intersection, $\cap \mathcal{S}^{\ell}$, $-\infty<\ell<\infty$.

4.5.3 Pseudodifferential operators

Given $a \in \mathcal{S}^{m}$ let

$$
T_{a}^{0}: S \rightarrow \mathcal{C}^{\infty}\left(T^{n}\right)
$$

be the operator

$$
T_{a}^{0} g=\sum a(x, k) g(k) e^{i k x}
$$

Since

$$
\left|D^{\alpha} a(x, k) e^{i k x}\right| \leq C_{\alpha}\langle k\rangle^{m+\langle\alpha\rangle}
$$

and

$$
|g(k)| \leq C_{\alpha}\langle k\rangle^{-(m+n+|\alpha|+1)}
$$

this operator is well-defined, i.e., the right hand side is in $\mathcal{C}^{\infty}\left(T^{n}\right)$. Composing T_{a}^{0} with F we get an operator

$$
T_{a}: \mathcal{C}^{\infty}\left(T^{n}\right) \rightarrow \mathcal{C}^{\infty}\left(T^{n}\right)
$$

We call T_{a} the pseudodifferential operator with symbol a.
Note that

$$
T_{a} e^{i k x}=a(x, k) e^{i k x}
$$

Also note that if

$$
\begin{equation*}
P=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha} \tag{5.3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
p(x, \xi)=\sum_{|\alpha| \leq m} a_{\alpha}(x) \xi^{\alpha} \tag{5.3.2}
\end{equation*}
$$

Then

$$
P=T_{p}
$$

4.5.4 The composition formula

Let P be the differential operator (5.3.1). If a is in \mathcal{S}^{r} we will show that $P T_{a}$ is a pseudodifferential operator of order $m+r$. In fact we will show that

$$
\begin{equation*}
P T_{a}=T_{p \circ a} \tag{5.4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
p \circ a(x, \xi)=\sum_{|\alpha| \leq m} \frac{1}{\beta!} \partial_{\xi}^{\beta} p(x, \xi) D_{x}^{\beta} a(x, \xi) \tag{5.4.2}
\end{equation*}
$$

and $p(x, \xi)$ is the function (5.3.2).
Proof. By definition

$$
\begin{aligned}
P T_{a} e^{i k x} & =P a(x, k) e^{i k x} \\
& =e^{i k x}\left(e^{-i k x} P e^{i k x}\right) a(x, k)
\end{aligned}
$$

Thus $P T_{a}$ is the pseudodifferential operator with symbol

$$
\begin{equation*}
e^{-i x \xi} P e^{i x \xi} a(x, \xi) \tag{5.4.3}
\end{equation*}
$$

However, by (5.3.1):

$$
\begin{aligned}
e^{-i x \xi} P e^{i x \xi} u(x) & =\sum a_{\alpha}(x) e^{-i x \xi} D^{\alpha} e^{i x \xi} u(x) \\
& =\sum a_{\alpha}(x)(D+\xi)^{\alpha} u(x) \\
& =P(x, D+\xi) u(x)
\end{aligned}
$$

Moreover,

$$
p(x, \eta+\xi)=\sum \frac{1}{\beta!} \frac{\partial}{\partial \xi^{\beta}} p(x, \xi) \eta^{\beta}
$$

so

$$
p(x, D+\xi) u(x)=\sum \frac{1}{\beta!} \frac{\partial}{\partial \xi^{\beta}} p(x, \xi) D^{\beta} u(x)
$$

and if we plug in $a(x, \xi)$ for $u(x)$ we get, by (5.4.3), the formula (5.4.2) for the symbol of $P T_{a}$.

4.5.5 The inversion formula

Suppose now that the operator (5.3.1) is elliptic. We will prove below the following inversion theorem.
Theorem. There exists an $a \in \mathcal{S}^{-m}$ and an $r \in \bigcap S^{\ell},-\infty<\ell<\infty$, such that

$$
P T_{a}=I-T_{r}
$$

Proof. Let

$$
p_{m}(x, \xi)=\sum_{|\alpha|=m} a_{\alpha}(x) \xi^{\alpha}
$$

By ellipticity $p_{m}(x, \xi) \neq 0$ for $\xi \notin 0$. Let $\rho \in \mathcal{C}^{\infty}(\mathbb{R})$ be a function satisfying $\rho(t)=0$ for $t<1$ and $\rho(t)=1$ for $t>2$. Then the function

$$
\begin{equation*}
a_{0}(x, \xi)=\rho(|\xi|) \frac{1}{p_{m}(x, \xi)} \tag{5.5.1}
\end{equation*}
$$

is well-defined and belongs to S^{-m}. To prove the theorem we must prove that there exist symbols $a \in \mathcal{S}^{-m}$ and $r \in \bigcap \mathcal{S}^{\ell},-\infty<\ell<\infty$, such that

$$
p \circ q=1-r .
$$

We will deduce this from the following two lemmas.

Lemma. If $b \in \mathcal{S}^{i}$ then

$$
b-p \circ a_{0} b
$$

is in \mathcal{S}^{i-1}.
Proof. Let $q=p-p_{m}$. Then $q \in \mathcal{S}^{m-1}$ so $q \circ a_{0} b$ is in \mathcal{S}^{i-1} and by (5.4.2)

$$
\begin{aligned}
p \circ a_{0} b & =p_{m} \circ a_{0} b+q \circ a_{0} b \\
& =p_{m} a_{0} b+\cdots=b+\cdots
\end{aligned}
$$

where the dots are terms of order $i-1$.
Lemma. There exists a sequence of symbols $a_{i} \in \mathcal{S}^{-m-i}, i=0,1, \ldots$, and a sequence of symbols $r_{i} \in \mathcal{S}^{-i}$, $i=0, \ldots$, such that a_{0} is the symbol (5.5.1), $r_{0}=1$ and

$$
p \circ a_{i}=r_{i}-r_{i+1}
$$

for all i.
Proof. Given a_{0}, \ldots, a_{i-1} and $r_{0}, \ldots r_{i}$, let $a_{i}=r_{i} a_{0}$ and $r_{i+1}=r_{i}-p \circ a_{i}$. By Lemma 4.5.5, $r_{i+1} \in \mathcal{S}^{-i-1}$.
Now let $a \in \mathcal{S}^{-m}$ be the "asymptotic sum" of the a_{i} 's

$$
a \sim \sum a_{i} .
$$

Then

$$
p \circ a \sim \sum p \circ a_{i}=\sum_{i=1}^{\infty} r_{i}-r_{i=1}=r_{0}=1,
$$

so $1-p \circ a \sim 0$, i.e., $r=1-p \circ q$ is in $\bigcap \mathcal{S}^{\ell},-\infty<\ell<\infty$.

4.5.6 Smoothing properties of $\Psi D O$'s

Let $a \in \mathcal{S}^{\ell}, \ell<-m-n$. We will prove in this section that the sum

$$
\begin{equation*}
K_{a}(x, y)=\sum a(x, k) e^{i k(x-y)} \tag{5.6.1}
\end{equation*}
$$

is in $C^{m}\left(T^{\beta} \times T^{n}\right)$ and that T_{a} is the integral operator associated with K_{a}, i.e.,

$$
T_{a} u(x)=\int K_{a}(x, y) u(y) d y
$$

Proof. For $|\alpha|+|\beta| \leq m$

$$
D_{x}^{\alpha} D_{y}^{\beta} a(x, k) e^{i k(x-y)}
$$

is bounded by $\langle k\rangle^{\ell+|\alpha|+|\beta|}$ and hence by $\langle k\rangle^{\ell+m}$. But $\ell+m<-n$, so the sum

$$
\sum D_{x}^{\alpha} D_{y}^{\beta} a(x, k) e^{i k(x-y)}
$$

converges absolutely. Now notice that

$$
\int K_{a}(x, y) e^{i k y} d y=a(x, k) e^{i k x}=T_{\alpha} e^{i k x}
$$

Hence T_{a} is the integral operators defined by K_{a}. Let

$$
\begin{equation*}
\mathcal{S}^{-\infty}=\bigcap \mathcal{S}^{\ell}, \quad-\infty<\ell \infty . \tag{5.6.2}
\end{equation*}
$$

If a is in $\mathcal{S}^{-\infty}$, then by (5.6.1), T_{a} is a smoothing operator.

4.5.7 Pseudolocality

We will prove in this section that if f and g are \mathcal{C}^{∞} functions on T^{n} with non-overlapping supports and a is in \mathcal{S}^{m}, then the operator

$$
\begin{equation*}
u \in \mathcal{C}^{\infty}\left(T^{n}\right) \rightarrow f T_{a} g u \tag{5.7.1}
\end{equation*}
$$

is a smoothing operator. (This property of pseudodifferential operators is called pseudolocality.) We will first prove:
Lemma. If $a(x, \xi)$ is in \mathcal{S}^{m} and $w \in \mathbb{R}^{n}$, the function,

$$
\begin{equation*}
a_{w}(x, \xi)=a(x, \xi+w)-a(x, \xi) \tag{5.7.2}
\end{equation*}
$$

is in S^{m-1}.
Proof. Recall that $a \in \mathcal{S}^{m}$ if and only if

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-|\beta|}
$$

From this estimate is is clear that if a is in $\mathcal{S}^{m}, a(x, \xi+w)$ is in \mathcal{S}^{m} and $\frac{\partial a}{\partial \xi_{i}}(x, \xi)$ is in \mathcal{S}^{m-1}, and hence that the integral

$$
a_{w}(x, \xi)=\int_{0}^{1} \sum_{i} \frac{\partial a}{\partial \xi_{i}}(x, \xi+t w) d t
$$

in \mathcal{S}^{m-1}.
Now let ℓ be a large positive integer and let a be in $\mathcal{S}^{m}, m<-n-\ell$. Then

$$
K_{a}(x, y)=\sum a(x, k) e^{i k(x-y)}
$$

is in $C^{\ell}\left(T^{n} \times T^{n}\right)$, and T_{a} is the integral operator defined by K_{a}. Now notice that for $w \in \mathbb{Z}^{n}$

$$
\begin{equation*}
\left(e^{-i(x-y) w}-1\right) K_{a}(x, y)=\sum a_{w}(x, k) e^{i k(x-y)} \tag{5.7.3}
\end{equation*}
$$

so by the lemma the left hand side of (5.7.3) is in $C^{\ell+1}\left(T^{n} \times T^{n}\right)$. More generally,

$$
\begin{equation*}
\left(e^{-i(x-y) w}-1\right)^{N} K_{a}(x, y) \tag{5.7.4}
\end{equation*}
$$

is in $C^{\ell+N}\left(T^{n} \times T^{n}\right)$. In particular, if $x \neq y$, then for some $1 \leq i \leq n, x_{i}-y_{i} \not \equiv 0 \bmod 2 \pi Z$, so if

$$
w=(0,0, \ldots, 1,0, \ldots, 0)
$$

(a " 1 " in the $\mathrm{i}^{\text {th }}$-slot), $e^{i(x-y) w} \neq 1$ and, by (5.7.4), $K_{a}(x, y)$ is $C^{\ell+N}$ is a neighborhood of (x, y). Since N can be arbitrarily large we conclude
Lemma. $K_{a}(x, y)$ is a \mathcal{C}^{∞} function on the complement of the diagonal in $T^{n} \times T^{n}$.
Thus if f and g are \mathcal{C}^{∞} functions with non-overlapping support, $f T_{a} g$ is the smoothing operator, T_{K}, where

$$
\begin{equation*}
K(x, y)=f(x) K_{a}(x, y) g(y) \tag{5.7.5}
\end{equation*}
$$

We have proved that T_{a} is pseudolocal if $a \in \mathcal{S}^{m}, m<-n-\ell$, ℓ a large positive integer. To get rid of this assumption let $\langle D\rangle^{N}$ be the operator with symbol $\langle\xi\rangle^{N}$. If N is an even positive integer

$$
\langle D\rangle^{N}=\left(\sum D_{i}^{2}+I\right)^{\frac{N}{2}}
$$

is a differential operator and hence is a local operator: if f and g have non-overlapping supports, $f\langle D\rangle^{N} g$ is identically zero. Now let $a_{N}(x, \xi)=a(x, \xi)\langle\xi\rangle^{-N}$. Since $a_{N} \in \mathcal{S}^{m-N}, T_{a_{N}}$ is pseudolocal for N large. But $T_{a}=T_{a_{N}}\langle D\rangle^{N}$, so T_{a} is the composition of an operator which is pseudolocal with an operator which is local, and therefore T_{a} itself is pseudolocal.

4.6 Elliptic operators on open subsets of T^{n}

Let U be an open subset of T^{n}. We will denote by $\iota_{U}: U \rightarrow T^{n}$ the inclusion map and by $\iota_{U}^{*}: \mathcal{C}^{\infty}\left(T^{n}\right) \rightarrow$ $\mathcal{C}^{\infty}(U)$ the restriction map: let V be an open subset of T^{n} containing \bar{U} and

$$
P=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}, \quad a_{\alpha}(x) \in \mathcal{C}^{\infty}(V)
$$

an elliptic $m^{\text {th }}$ order differential operator. Let

$$
P^{t}=\sum_{|\alpha| \leq m} D^{\alpha} \bar{a}_{\alpha}(x)
$$

be the transpose operator and

$$
P_{m}(x, \xi)=\sum_{|\alpha|=m} a_{\alpha}(x) \xi^{\alpha}
$$

the symbol at P. We will prove below the following localized version of the inversion formula of $\S 4.5 .5$.
Theorem. There exist symbols, $a \in \mathcal{S}^{-m}$ and $r \in \mathcal{S}^{-\infty}$ such that

$$
\begin{equation*}
P \iota_{U}^{*} T_{a}=\iota_{U}^{*}\left(I-T_{r}\right) \tag{4.6.1}
\end{equation*}
$$

Proof. Let $\gamma \in \mathcal{C}_{0}^{\infty}(V)$ be a function which is bounded between 0 and 1 and is identically 1 in a neighborhood of \bar{U}. Let

$$
Q=P P^{t} \gamma+(1-\gamma)\left(\sum D_{\iota}^{2}\right)^{n}
$$

This is a globally defined $2 m^{\text {th }}$ order differential operator in T^{n} with symbol,

$$
\begin{equation*}
\gamma(x)\left|P_{m}(x, \xi)\right|^{2}+(1-\gamma(x))|\xi|^{2 m} \tag{4.6.2}
\end{equation*}
$$

and since (4.6.2) is non-vanishing on $T^{n} \times\left(\mathbb{R}^{n}-0\right)$, this operator is elliptic. Hence, by Theorem 4.5.5, there exist symbols $b \in \mathcal{S}^{-2 m}$ and $r \in \mathcal{S}^{-\infty}$ such that

$$
Q T_{b}=I-T_{r}
$$

Let $T_{a}=P^{t} \gamma T_{b}$. Then since $\gamma \equiv 1$ on a neighborhood of \bar{U},

$$
\begin{aligned}
\iota_{U}^{*}\left(I-T_{r}\right) & =\iota_{U}^{*} Q T_{b} \\
& =\iota_{U}^{*}\left(P P^{t} \gamma T_{b}+(1-\gamma) \sum D_{i}^{2} T_{b}\right) \\
& =\iota_{U}^{*} P P^{t} \gamma T_{b} \\
& =P \iota_{U}^{*} P^{t} \gamma T_{b}=P \iota_{U}^{*} T_{a} .
\end{aligned}
$$

4.7 Elliptic operators on compact manifolds

Let X be a compact n dimensional manifold and

$$
P: \mathcal{C}^{\infty}(X) \rightarrow \mathcal{C}^{\infty}(X)
$$

an elliptic $m^{\text {th }}$ order differential operator. We will show in this section how to construct a parametrix for P : an operator

$$
Q: \mathcal{C}^{\infty}(X) \rightarrow \mathcal{C}^{\infty}(X)
$$

such that $I-P Q$ is smoothing.
Let $V_{i}, i=1, \ldots, N$ be a covering of X by coordinate patches and let $U_{i}, i=1, \ldots, N, \bar{U}_{i} \subset V_{i}$ be an open covering which refines this covering. We can, without loss of generality, assume that V_{i} is an open subset of the hypercube

$$
\left\{x \in \mathbb{R}^{n} \quad 0<x_{i}<2 \pi \quad i=1, \ldots, n\right\}
$$

and hence an open subset of T^{n}. Let

$$
\left\{\rho_{i} \in \mathcal{C}_{0}^{\infty}\left(U_{i}\right), \quad i=1, \ldots, N\right\}
$$

be a partition of unity and let $\gamma_{i} \in \mathcal{C}_{0}^{\infty}\left(U_{i}\right)$ be a function which is identically one on a neighborhood of the support of ρ_{i}. By Theorem 4.6, there exist symbols $a_{i} \in \mathcal{S}^{-m}$ and $r_{i} \in \mathcal{S}^{-\infty}$ such that on T^{n} :

$$
\begin{equation*}
P \iota_{U_{i}}^{*} T_{a_{i}}=\iota_{U_{i}}^{*}\left(I-T_{r_{i}}\right) . \tag{4.7.1}
\end{equation*}
$$

Moreover, by pseudolocality $\left(1-\gamma_{i}\right) T_{a_{i}} \rho_{i}$ is smoothing, so

$$
\gamma_{i} T_{a_{i}} \rho_{i}-\iota_{U_{i}}^{*} T_{a_{i}} \rho_{i}
$$

and

$$
P \gamma_{i} T_{a_{i}} \rho_{i}-P \iota_{U_{i}}^{*} T_{a_{i}} \rho_{i}
$$

are smoothing. But by (4.7.1)

$$
P \iota_{U_{i}}^{*} T_{a_{i}} \rho_{i}-\rho_{i} I
$$

is smoothing. Hence

$$
\begin{equation*}
P \gamma_{i} T_{a_{i}} \rho_{i}-\rho_{i} I \tag{4.7.2}
\end{equation*}
$$

is smoothing as an operator on T^{n}. However, $P \gamma_{i} T_{a_{i}} \rho_{i}$ and $\rho_{i} I$ are globally defined as operators on X and hence (4.7.2) is a globally defined smoothing operator. Now let $Q=\sum \gamma_{i} T_{a_{i}} \rho_{i}$ and note that by (4.7.2)

$$
P Q-I
$$

is a smoothing operator.

This concludes the proof of Theorem 4.3, and hence, modulo proving Theorem 4.3. This concludes the proof of our main result: Theorem 4.2. The proof of Theorem 4.3 will be outlined, as a series of exercises, in the next section.

4.8 The Fredholm theorem for smoothing operators

Let X be a compact n-dimensional manifold equipped with a smooth non-vanishing measure, $d x$. Given $K \in \mathcal{C}^{\infty}(X \times X)$ let

$$
T_{K}: \mathcal{C}^{\infty}(X) \rightarrow \mathcal{C}^{\infty}(X)
$$

be the smoothing operator 3.1.
Exercise 1. Let V be the volume of X (i.e., the integral of the constant function, 1, over X). Show that if

$$
\max |K(x, y)|<\frac{\epsilon}{V}, \quad 0<\epsilon<1
$$

then $I-T_{K}$ is invertible and its inverse is of the form, $I-T_{L}, L \in \mathcal{C}^{\infty}(X \times X)$.
Hint 1. Let $K_{i}=K \circ \cdots \circ K$ (i products). Show that $\sup \left|K_{i}(x, y)\right|<C \epsilon^{i}$ and conclude that the series

$$
\begin{equation*}
\sum K_{i}(x, y) \tag{4.8.1}
\end{equation*}
$$

converges uniformly.
Hint 2. Let U and V be coordinate patches on X. Show that on $U \times V$

$$
D_{x}^{\alpha} D_{y}^{\beta} K_{i}(x, y)=K^{\alpha} \circ K_{i-2} \circ K^{\beta}(x, y)
$$

where $K^{\alpha}(x, z)=D_{x}^{\alpha} K(x, z)$ and $K^{\beta}(z, y)=D_{y}^{\beta} K(z, y)$. Conclude that not only does (8.1) converge on $U \times V$ but so do its partial derivatives of all orders with respect to x and y.

Exercise 2. (finite rank operators.) T_{K} is a finite rank smoothing operator if K is of the form:

$$
\begin{equation*}
K(x, y)=\sum_{i=1}^{N} f_{i}(x) g_{i}(y) \tag{4.8.2}
\end{equation*}
$$

(a) Show that if T_{K} is a finite rank smoothing operator and T_{L} is any smoothing operator, $T_{K} T_{L}$ and $T_{L} T_{K}$ are finite rank smoothing operators.
(b) Show that if T_{K} is a finite rank smoothing operator, the operator, $I-T_{K}$, has finite dimensional kernel and co-kernel.

Hint. Show that if f is in the kernel of this operator, it is in the linear span of the f_{i} 's and that f is in the image of this operator if

$$
\int f(y) g_{i}(y) d y=0, \quad i=1, \ldots, N
$$

Exercise 3. Show that for every $K \in \mathcal{C}^{\infty}(X \times X)$ and every $\epsilon>0$ there exists a function, $K_{1} \in \mathcal{C}^{\infty}(X \times X)$ of the form (4.8.2) such that

$$
\sup \left|K-K_{1}\right|(x, y)<\epsilon
$$

Hint. Let \mathcal{A} be the set of all functions of the form (4.8.2). Show that \mathcal{A} is a subalgebra of $C(X \times X)$ and that this subalgebra separates points. Now apply the Stone-Weierstrass theorem to conclude that \mathcal{A} is dense in $C(X \times X)$.
Exercise 4. Prove that if T_{K} is a smoothing operator the operator

$$
I-T_{K}: \mathcal{C}^{\infty}(X) \rightarrow \mathcal{C}^{\infty}(X)
$$

has finite dimensional kernel and co-kernel.
Hint. Show that $K=K_{1}+K_{2}$ where K_{1} is of the form (4.8.2) and K_{2} satisfies the hypotheses of exercise 1. Let $I-T_{L}$ be the inverse of $I-T_{K_{2}}$. Show that the operators

$$
\begin{aligned}
& \left(I-T_{K}\right) \circ\left(I-T_{L}\right) \\
& \left(I-T_{L}\right) \circ\left(I-T_{K}\right)
\end{aligned}
$$

are both of the form: identity minus a finite rank smoothing operator. Conclude that $I-T_{K}$ has finite dimensional kernel and co-kernel.

Exercise 5. Prove Theorem 4.3.

