Lecture 18

4.5 Pseudodifferential operators on T^n

In this section we will prove Theorem 4.2 for elliptic operators on T^n . Here's a road map to help you navigate this section. §4.5.1 is a succinct summary of the material in §4. Sections 4.5.2, 4.5.3 and 4.5.4 are a brief account of the theory of pseudodifferential operators on T^n and the symbolic calculus that's involved in this theory. In §4.5.5 and 4.5.6 we prove that an elliptic operator on T^n is right invertible modulo smoothing operators (and that its inverse is a pseudodifferential operator). Finally, in §4.5.7, we prove that pseudodifferential operators have a property called "pseudolocality" which makes them behave in some ways like differential operators (and which will enable us to extend the results of this section from T^n to arbitrary compact manifolds).

 $\langle a \rangle = (|a|^2 + 1)^{\frac{1}{2}}.$

 $|a| \le \langle a \rangle$

Some notation which will be useful below: for $a \in \mathbb{R}^n$ let

Thus

and for
$$|a| \ge 1$$

 $\langle a \rangle \le 2|a|$.

4.5.1 The Fourier inversion formula

Given
$$f \in \mathcal{C}^{\infty}(T^n)$$
, let $c_k(f) = \langle f, e^{ikx} \rangle$. Then:

- 1) $c_k(D^{\alpha f}) = k^{\alpha}c_k(f).$
- 2) $|c_k(f)| \leq C_r \langle k \rangle^{-r}$ for all r.
- 3) $\sum c_k(f)e^{ikx} = f.$

Let S be the space of functions,

satisfying

 $|g(k)| \le C_r \langle k \rangle^{-r}$

 $g:\mathbb{Z}^n\to\mathbb{C}$

for all r. Then the map

$$F: \mathcal{C}^{\infty}(T^n) \to S, \quad Ff(k) = c_k(f)$$

is bijective and its inverse is the map,

$$g \in S \to \sum g(k)e^{ikx}$$
.

4.5.2 Symbols

A function $a: T^n \times \mathbb{R}^n \to \mathbb{C}$ is an \mathcal{S}^m if, for all multi-indices, α and β ,

$$|D_x^{\alpha} D_{\xi}^{\beta}| \le C_{\alpha,\beta} \langle \xi \rangle^{m-|\beta|} \,. \tag{5.2.1}$$

Examples

- 1) $a(x,\xi) = \sum_{|\alpha| \le m} a_{\alpha}(x)\xi^{\alpha}, a_{\alpha} \in \mathcal{C}^{\infty}(T^{n}).$ 2) $\langle \xi \rangle^{m}.$ 3) $a \in S^{\ell}$ and $b \in S^{m} \Rightarrow ab \in S^{\ell+m}.$
- 4) $a \in \mathcal{S}^m \Rightarrow D_x^{\alpha} D_{\xi}^{\beta} a \in \mathcal{S}^{m-|\beta|}.$

The asymptotic summation theorem

Given $b_i \in \mathcal{S}^{m-i}$, $i = 0, 1, \ldots$, there exists a $b \in \mathcal{S}^m$ such that

$$b - \sum_{j < i} b_j \in \mathcal{S}^{m-i}.$$
(5.2.2)

Proof. Step 1. Let $\ell = m + \epsilon, \epsilon > 0$. Then

$$|b_i(x,\xi)| < C_i \langle \xi \rangle^{m-i} = \frac{c_i \langle \xi \rangle^{\ell-i}}{\langle \xi \rangle^{\epsilon}}.$$

Thus, for some λ_i ,

$$|b_i(x,\xi) < \frac{1}{2^i} \langle \xi \rangle^{\ell-i}$$

for $|\xi| > \lambda_i$. We can assume that $\lambda_i \to +\infty$ as $i \to +\infty$. Let $\rho \in \mathcal{C}^{\infty}(\mathbb{R})$ be bounded between 0 and 1 and satisfy $\rho(t) = 0$ for t < 1 and $\rho(t) = 1$ for t > 2. Let

$$b = \sum \rho\left(\frac{|\xi|}{\lambda_i}\right) b_i(x,\xi) \,. \tag{5.2.3}$$

Then b is in $\mathcal{C}^{\infty}(T^n \times \mathbb{R}^n)$ since, on any compact subset, only a finite number of summands are non-zero. Moreover, $b - \sum_{j < i} b_j$ is equal to:

$$\sum_{j < i} \left(\rho\left(\frac{|\xi|}{\lambda_j}\right) - 1 \right) b_j + b_i + \sum_{j > i} \rho\left(\frac{|\xi|}{\lambda_j}\right) b_j.$$

The first summand is compactly supported, the second summand is in S^{m-1} and the third summand is bounded from above by

$$\sum_{k>i} \frac{1}{2^k} \langle \xi \rangle^{\ell-k}$$

which is less than $\langle \xi \rangle^{\ell-(i+1)}$ and hence, for $\epsilon < 1$, less than $\langle \xi \rangle^{m-i}$. Step 2. For $|\alpha| + |\beta| \leq N$ choose λ_i so that

$$|D_x^{\alpha} D_{\xi}^{\beta} b_i(x,\xi)| \le \frac{1}{2^i} \langle \xi \rangle^{\ell-i-|\beta|}$$

for $\lambda_i < |\xi|$. Then the same argument as above implies that

$$D_x^{\alpha} D_{\xi}^{\beta}(b - \sum_{j,i} b_j) \le C_N \langle \xi \rangle^{m-i-|\beta|}$$
(5.2.4)

for $|\alpha| + |\beta| \leq N$.

Step 3. The sequence of λ_i 's in step 2 depends on N. To indicate this dependence let's denote this sequence by $\lambda_{i,N}$, $i = 0, 1, \ldots$ We can, by induction, assume that for all $i, \lambda_{i,N} \leq \lambda_{i,N+1}$. Now apply the Cantor diagonal process to this collection of sequences, i.e., let $\lambda_i = \lambda_{i,i}$. Then b has the property (5.2.4) for all N.

We will denote the fact that b has the property (5.2.2) by writing

$$b \sim \sum b_i \,. \tag{5.2.5}$$

The symbol, b, is not unique, however, if $b \sim \sum b_i$ and $b' \sim \sum b_i$, b - b' is in the intersection, $\bigcap S^{\ell}$, $-\infty < \ell < \infty.$

4.5.3**Pseudodifferential operators**

Given $a \in \mathcal{S}^m$ let

be the operator

$$T^0_a g = \sum a(x,k)g(k)e^{ikx} \,.$$

 $T_a^0: S \to \mathcal{C}^\infty(T^n)$

Since

 $|D^{\alpha}a(x,k)e^{ikx}| \le C_{\alpha}\langle k \rangle^{m+\langle \alpha \rangle}$

and

 $|g(k)| \le C_{\alpha} \langle k \rangle^{-(m+n+|\alpha|+1)}$ this operator is well-defined, i.e., the right hand side is in $\mathcal{C}^{\infty}(T^n)$. Composing T^0_a with F we get an operator

 $T_a: \mathcal{C}^{\infty}(T^n) \to \mathcal{C}^{\infty}(T^n).$

We call
$$T_a$$
 the pseudodifferential operator with symbol a .

Note that

$$T_a e^{ikx} = a(x,k)e^{ikx}$$

Also note that if

$$P = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}$$
(5.3.1)

and

$$p(x,\xi) = \sum_{|\alpha| \le m} a_{\alpha}(x)\xi^{\alpha}.$$
(5.3.2)

Then

$$P = T_p$$

4.5.4 The composition formula

Let P be the differential operator (5.3.1). If a is in S^r we will show that PT_a is a pseudodifferential operator of order m + r. In fact we will show that

$$PT_a = T_{p \circ a} \tag{5.4.1}$$

where

$$p \circ a(x,\xi) = \sum_{|\alpha| \le m} \frac{1}{\beta!} \partial_{\xi}^{\beta} p(x,\xi) D_x^{\beta} a(x,\xi)$$
(5.4.2)

and $p(x,\xi)$ is the function (5.3.2).

Proof. By definition

$$\begin{aligned} PT_a e^{ikx} &= Pa(x,k)e^{ikx} \\ &= e^{ikx}(e^{-ikx}Pe^{ikx})a(x,k) \,. \end{aligned}$$

Thus PT_a is the pseudodifferential operator with symbol

$$e^{-ix\xi}Pe^{ix\xi}a(x,\xi). \tag{5.4.3}$$

However, by (5.3.1):

$$e^{-ix\xi}Pe^{ix\xi}u(x) = \sum a_{\alpha}(x)e^{-ix\xi}D^{\alpha}e^{ix\xi}u(x)$$

=
$$\sum a_{\alpha}(x)(D+\xi)^{\alpha}u(x)$$

=
$$P(x, D+\xi)u(x).$$

Moreover,

$$p(x, \eta + \xi) = \sum \frac{1}{\beta!} \frac{\partial}{\partial \xi^{\beta}} p(x, \xi) \eta^{\beta},$$

 \mathbf{so}

$$p(x,D+\xi)u(x) = \sum \frac{1}{\beta !} \frac{\partial}{\partial \xi^\beta} p(x,\xi) D^\beta u(x)$$

and if we plug in $a(x,\xi)$ for u(x) we get, by (5.4.3), the formula (5.4.2) for the symbol of PT_a .

4.5.5 The inversion formula

Suppose now that the operator (5.3.1) is elliptic. We will prove below the following inversion theorem.

Theorem. There exists an $a \in S^{-m}$ and an $r \in \bigcap S^{\ell}$, $-\infty < \ell < \infty$, such that

$$PT_a = I - T_r$$

Proof. Let

$$p_m(x,\xi) = \sum_{|\alpha|=m} a_\alpha(x)\xi^{\alpha}$$

By ellipticity $p_m(x,\xi) \neq 0$ for $\xi \notin 0$. Let $\rho \in \mathcal{C}^{\infty}(\mathbb{R})$ be a function satisfying $\rho(t) = 0$ for t < 1 and $\rho(t) = 1$ for t > 2. Then the function

$$a_0(x,\xi) = \rho(|\xi|) \frac{1}{p_m(x,\xi)}$$
(5.5.1)

is well-defined and belongs to S^{-m} . To prove the theorem we must prove that there exist symbols $a \in S^{-m}$ and $r \in \bigcap S^{\ell}$, $-\infty < \ell < \infty$, such that

$$p \circ q = 1 - r \,.$$

We will deduce this from the following two lemmas.

Lemma. If $b \in S^i$ then

$$b - p \circ a_0 b$$

is in \mathcal{S}^{i-1} .

Proof. Let $q = p - p_m$. Then $q \in S^{m-1}$ so $q \circ a_0 b$ is in S^{i-1} and by (5.4.2)

$$p \circ a_0 b = p_m \circ a_0 b + q \circ a_0 b$$
$$= p_m a_0 b + \dots = b + \dots$$

where the dots are terms of order i - 1.

Lemma. There exists a sequence of symbols $a_i \in S^{-m-i}$, i = 0, 1, ..., and a sequence of symbols $r_i \in S^{-i}$, i = 0, ..., such that a_0 is the symbol (5.5.1), $r_0 = 1$ and

$$p \circ a_i = r_i - r_{i+1}$$

for all i.

Proof. Given a_0, \ldots, a_{i-1} and r_0, \ldots, r_i , let $a_i = r_i a_0$ and $r_{i+1} = r_i - p \circ a_i$. By Lemma 4.5.5, $r_{i+1} \in \mathcal{S}^{-i-1}$.

Now let $a \in \mathcal{S}^{-m}$ be the "asymptotic sum" of the a_i 's

$$a \sim \sum a_i$$
.

Then

$$p \circ a \sim \sum p \circ a_i = \sum_{i=1}^{\infty} r_i - r_{i=1} = r_0 = 1,$$

so $1 - p \circ a \sim 0$, i.e., $r = 1 - p \circ q$ is in $\bigcap S^{\ell}$, $-\infty < \ell < \infty$.

4.5.6 Smoothing properties of ΨDO 's

Let $a \in \mathcal{S}^{\ell}$, $\ell < -m - n$. We will prove in this section that the sum

$$K_a(x,y) = \sum a(x,k)e^{ik(x-y)}$$
(5.6.1)

is in $C^m(T^\beta \times T^n)$ and that T_a is the integral operator associated with K_a , i.e.,

$$T_a u(x) = \int K_a(x, y) u(y) \, dy$$

Proof. For $|\alpha| + |\beta| \le m$

$$D_x^{\alpha} D_y^{\beta} a(x,k) e^{ik(x-y)}$$

is bounded by $\langle k \rangle^{\ell+|\alpha|+|\beta|}$ and hence by $\langle k \rangle^{\ell+m}$. But $\ell+m < -n$, so the sum

$$\sum D_x^{\alpha} D_y^{\beta} a(x,k) e^{ik(x-y)}$$

converges absolutely. Now notice that

$$\int K_a(x,y)e^{iky}\,dy = a(x,k)e^{ikx} = T_\alpha e^{ikx}$$

Hence T_a is the integral operators defined by K_a . Let

$$\mathcal{S}^{-\infty} = \bigcap \mathcal{S}^{\ell}, \quad -\infty < \ell \infty.$$
(5.6.2)

If a is in $\mathcal{S}^{-\infty}$, then by (5.6.1), T_a is a smoothing operator.

4.5.7 Pseudolocality

We will prove in this section that if f and g are \mathcal{C}^{∞} functions on T^n with non-overlapping supports and a is in \mathcal{S}^m , then the operator

$$u \in \mathcal{C}^{\infty}(T^n) \to fT_a gu \tag{5.7.1}$$

is a smoothing operator. (This property of pseudodifferential operators is called *pseudolocality*.) We will first prove:

Lemma. If $a(x,\xi)$ is in S^m and $w \in \mathbb{R}^n$, the function,

$$a_w(x,\xi) = a(x,\xi+w) - a(x,\xi)$$
(5.7.2)

is in S^{m-1} .

Proof. Recall that $a \in S^m$ if and only if

$$|D_x^{\alpha} D_{\xi}^{\beta} a(x,\xi)| \le C_{\alpha,\beta} \langle \xi \rangle^{m-|\beta|}$$

From this estimate is is clear that if a is in S^m , $a(x, \xi + w)$ is in S^m and $\frac{\partial a}{\partial \xi_i}(x, \xi)$ is in S^{m-1} , and hence that the integral

$$a_w(x,\xi) = \int_0^1 \sum_i \frac{\partial a}{\partial \xi_i} (x,\xi + tw) \, dt$$

in \mathcal{S}^{m-1} .

Now let ℓ be a large positive integer and let a be in \mathcal{S}^m , $m < -n - \ell$. Then

$$K_a(x,y) = \sum a(x,k)e^{ik(x-y)}$$

is in $C^{\ell}(T^n \times T^n)$, and T_a is the integral operator defined by K_a . Now notice that for $w \in \mathbb{Z}^n$

$$(e^{-i(x-y)w} - 1)K_a(x,y) = \sum a_w(x,k)e^{ik(x-y)}, \qquad (5.7.3)$$

so by the lemma the left hand side of (5.7.3) is in $C^{\ell+1}(T^n \times T^n)$. More generally,

$$(e^{-i(x-y)w} - 1)^N K_a(x,y)$$
(5.7.4)

is in $C^{\ell+N}(T^n \times T^n)$. In particular, if $x \neq y$, then for some $1 \leq i \leq n, x_i - y_i \not\equiv 0 \mod 2\pi Z$, so if

$$w = (0, 0, \dots, 1, 0, \dots, 0),$$

(a "1" in the ith-slot), $e^{i(x-y)w} \neq 1$ and, by (5.7.4), $K_a(x,y)$ is $C^{\ell+N}$ is a neighborhood of (x,y). Since N can be arbitrarily large we conclude

Lemma. $K_a(x,y)$ is a \mathcal{C}^{∞} function on the complement of the diagonal in $T^n \times T^n$.

Thus if f and g are \mathcal{C}^{∞} functions with non-overlapping support, fT_ag is the smoothing operator, T_K , where

$$K(x,y) = f(x)K_a(x,y)g(y).$$
(5.7.5)

We have proved that T_a is pseudolocal if $a \in S^m$, $m < -n - \ell$, ℓ a large positive integer. To get rid of this assumption let $\langle D \rangle^N$ be the operator with symbol $\langle \xi \rangle^N$. If N is an even positive integer

$$\langle D \rangle^N = (\sum D_i^2 + I)^{\frac{N}{2}}$$

is a differential operator and hence is a *local* operator: if f and g have non-overlapping supports, $f\langle D \rangle^N g$ is identically zero. Now let $a_N(x,\xi) = a(x,\xi)\langle \xi \rangle^{-N}$. Since $a_N \in S^{m-N}$, T_{a_N} is pseudolocal for N large. But $T_a = T_{a_N} \langle D \rangle^N$, so T_a is the composition of an operator which is pseudolocal with an operator which is local, and therefore T_a itself is pseudolocal.

4.6 Elliptic operators on open subsets of T^n

Let U be an open subset of T^n . We will denote by $\iota_U : U \to T^n$ the inclusion map and by $\iota_U^* : \mathcal{C}^{\infty}(T^n) \to \mathcal{C}^{\infty}(U)$ the restriction map: let V be an open subset of T^n containing \overline{U} and

$$P = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha} , \quad a_{\alpha}(x) \in \mathcal{C}^{\infty}(V)$$

an elliptic $m^{\rm th}$ order differential operator. Let

$$P^t = \sum_{|\alpha| \le m} D^{\alpha} \overline{a}_{\alpha}(x)$$

be the transpose operator and

$$P_m(x,\xi) = \sum_{|\alpha|=m} a_{\alpha}(x)\xi^{\alpha}$$

the symbol at P. We will prove below the following localized version of the inversion formula of § 4.5.5.

Theorem. There exist symbols, $a \in S^{-m}$ and $r \in S^{-\infty}$ such that

$$P\iota_U^* T_a = \iota_U^* (I - T_r). (4.6.1)$$

Proof. Let $\gamma \in \mathcal{C}_0^{\infty}(V)$ be a function which is bounded between 0 and 1 and is identically 1 in a neighborhood of \overline{U} . Let

$$Q = PP^t \gamma + (1 - \gamma) (\sum D_{\iota}^2)^n$$

This is a globally defined $2m^{\text{th}}$ order differential operator in T^n with symbol,

$$\gamma(x)|P_m(x,\xi)|^2 + (1-\gamma(x))|\xi|^{2m}$$
(4.6.2)

and since (4.6.2) is non-vanishing on $T^n \times (\mathbb{R}^n - 0)$, this operator is elliptic. Hence, by Theorem 4.5.5, there exist symbols $b \in S^{-2m}$ and $r \in S^{-\infty}$ such that

$$QT_b = I - T_r$$
.

Let $T_a = P^t \gamma T_b$. Then since $\gamma \equiv 1$ on a neighborhood of \overline{U} ,

$$\iota_U^*(I - T_r) = \iota_U^*QT_b$$

= $\iota_U^*(PP^t\gamma T_b + (1 - \gamma)\sum D_i^2T_b)$
= $\iota_U^*PP^t\gamma T_b$
= $P\iota_U^*P^t\gamma T_b = P\iota_U^*T_a$.

4.7 Elliptic operators on compact manifolds

Let X be a compact n dimensional manifold and

$$P: \mathcal{C}^{\infty}(X) \to \mathcal{C}^{\infty}(X)$$

an elliptic m^{th} order differential operator. We will show in this section how to construct a *parametrix* for P: an operator

$$Q: \mathcal{C}^{\infty}(X) \to \mathcal{C}^{\infty}(X)$$

such that I - PQ is smoothing.

Let V_i , i = 1, ..., N be a covering of X by coordinate patches and let U_i , i = 1, ..., N, $\overline{U}_i \subset V_i$ be an open covering which refines this covering. We can, without loss of generality, assume that V_i is an open subset of the hypercube

$$\{x \in \mathbb{R}^n \quad 0 < x_i < 2\pi \quad i = 1, \dots, n\}$$

and hence an open subset of T^n . Let

$$\{\rho_i \in \mathcal{C}_0^\infty(U_i), \quad i = 1, \dots, N\}$$

be a partition of unity and let $\gamma_i \in \mathcal{C}_0^{\infty}(U_i)$ be a function which is identically one on a neighborhood of the support of ρ_i . By Theorem 4.6, there exist symbols $a_i \in \mathcal{S}^{-m}$ and $r_i \in \mathcal{S}^{-\infty}$ such that on T^n :

$$P\iota_{U_i}^* T_{a_i} = \iota_{U_i}^* (I - T_{r_i}).$$
(4.7.1)

Moreover, by pseudolocality $(1 - \gamma_i)T_{a_i}\rho_i$ is smoothing, so

$$\gamma_i T_{a_i} \rho_i - \iota_{U_i}^* T_{a_i} \rho_i$$

and

are smoothing. But by (4.7.1)

is smoothing. Hence

$$P\gamma_i T_{a_i}\rho_i - \rho_i I \tag{4.7.2}$$

is smoothing as an operator on T^n . However, $P\gamma_i T_{a_i}\rho_i$ and $\rho_i I$ are globally defined as operators on X and hence (4.7.2) is a globally defined smoothing operator. Now let $Q = \sum \gamma_i T_{a_i}\rho_i$ and note that by (4.7.2)

PQ - I

is a smoothing operator.

This concludes the proof of Theorem 4.3, and hence, modulo proving Theorem 4.3. This concludes the proof of our main result: Theorem 4.2. The proof of Theorem 4.3 will be outlined, as a series of exercises, in the next section.

4.8 The Fredholm theorem for smoothing operators

Let X be a compact n-dimensional manifold equipped with a smooth non-vanishing measure, dx. Given $K \in \mathcal{C}^{\infty}(X \times X)$ let

$$T_K: \mathcal{C}^\infty(X) \to \mathcal{C}^\infty(X)$$

be the smoothing operator 3.1.

Exercise 1. Let V be the volume of X (i.e., the integral of the constant function, 1, over X). Show that if

$$\max |K(x,y)| < \frac{\epsilon}{V}, \quad 0 < \epsilon < 1$$

then $I - T_K$ is invertible and its inverse is of the form, $I - T_L$, $L \in \mathcal{C}^{\infty}(X \times X)$. Hint 1. Let $K_i = K \circ \cdots \circ K$ (*i* products). Show that $\sup |K_i(x, y)| < C\epsilon^i$ and conclude that the series

$$\sum K_i(x,y) \tag{4.8.1}$$

converges uniformly.

Hint 2. Let U and V be coordinate patches on X. Show that on $U \times V$

$$D_x^{\alpha} D_y^{\beta} K_i(x, y) = K^{\alpha} \circ K_{i-2} \circ K^{\beta}(x, y)$$

where $K^{\alpha}(x,z) = D_x^{\alpha}K(x,z)$ and $K^{\beta}(z,y) = D_y^{\beta}K(z,y)$. Conclude that not only does (8.1) converge on $U \times V$ but so do its partial derivatives of *all* orders with respect to x and y.

Exercise 2. (finite rank operators.) T_K is a finite rank smoothing operator if K is of the form:

$$K(x,y) = \sum_{i=1}^{N} f_i(x)g_i(y).$$
(4.8.2)

$$P\gamma_i T_{a_i}\rho_i - P\iota_{U_i}^* T_{a_i}\rho_i$$
$$P\iota_{U_i}^* T_{a_i}\rho_i - \rho_i I$$

- (a) Show that if T_K is a finite rank smoothing operator and T_L is any smoothing operator, $T_K T_L$ and $T_L T_K$ are finite rank smoothing operators.
- (b) Show that if T_K is a finite rank smoothing operator, the operator, $I T_K$, has finite dimensional kernel and co-kernel.

Hint. Show that if f is in the kernel of this operator, it is in the linear span of the f_i 's and that f is in the image of this operator if

$$\int f(y)g_i(y)\,dy = 0\,, \quad i = 1,\dots, N\,.$$

Exercise 3. Show that for every $K \in \mathcal{C}^{\infty}(X \times X)$ and every $\epsilon > 0$ there exists a function, $K_1 \in \mathcal{C}^{\infty}(X \times X)$ of the form (4.8.2) such that

$$\sup |K - K_1|(x, y) < \epsilon.$$

Hint. Let \mathcal{A} be the set of all functions of the form (4.8.2). Show that \mathcal{A} is a subalgebra of $C(X \times X)$ and that this subalgebra separates points. Now apply the Stone–Weierstrass theorem to conclude that \mathcal{A} is dense in $C(X \times X).$

Exercise 4. Prove that if T_K is a smoothing operator the operator

$$I - T_K : \mathcal{C}^{\infty}(X) \to \mathcal{C}^{\infty}(X)$$

has finite dimensional kernel and co-kernel. Hint. Show that $K = K_1 + K_2$ where K_1 is of the form (4.8.2) and K_2 satisfies the hypotheses of exercise 1. Let $I - T_L$ be the inverse of $I - T_{K_2}$. Show that the operators

$$(I - T_K) \circ (I - T_L)$$
$$(I - T_L) \circ (I - T_K)$$

are both of the form: identity minus a finite rank smoothing operator. Conclude that $I - T_K$ has finite dimensional kernel and co-kernel.

Exercise 5. Prove Theorem 4.3.