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4.5 Pseudodifferential operators on T n 

In this section we will prove Theorem 4.2 for elliptic operators on T n . Here’s a road map to help you 
navigate this section. 4.5.1 is a succinct summary of the material in 4. Sections 4.5.2, 4.5.3 and 4.5.4 §
are a brief account of the theory of pseudodifferential operators on T n

§
and the symbolic calculus that’s 

involved in this theory. In §4.5.5 and 4.5.6 we prove that an elliptic operator on T n is right invertible 
modulo smoothing operators (and that its inverse is a pseudodifferential operator). Finally, in 4.5.7, we §
prove that pseudodifferential operators have a property called “pseudolocality” which makes them behave 
in some ways like differential operators (and which will enable us to extend the results of this section from 
T n to arbitrary compact manifolds). 

Some notation which will be useful below: for a ∈ Rn let 

a = ( a 2 + 1) . 

Thus 

a a| | ≤ � � 
and for a ≥ 1| |

a ≤ 2 a . 

4.5.1 The Fourier inversion formula 

Given f ∈ C∞(T n), let ck (f) = f, eikx . Then: 

1) ck(D
αf ) = kαck (f). 

2) ck (f) ≤ Cr k
−r for all r. 

ikx 3) 
� 
ck (f)e = f . 
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Let S be the space of functions, 
g : Zn 

C→
satisfying 

g(k) ≤ Cr| | �k�−r 

for all r. Then the map 
F : C∞(T n) → S , Ff(k) = ck (f) 

is bijective and its inverse is the map, 
ikx g ∈ S 

� 
g(k)e .→ 

4.5.2 Symbols 

A function a : T n × Rn → C is an Sm if, for all multi-indices, α and β, 

β |DαDξ ≤ Cα,β ξ
m−|β| . (5.2.1) x |

Examples 

1) a(x, ξ) = 
�

|α|≤m aα(x)ξα , aα ∈ C∞(T n).


m
2) .�ξ�

3) a ∈ Sℓ and b ∈ Sm ⇒ ab ∈ Sℓ+m .


4) a ∈ Sm DαDβ a ∈ Sm−|β|.x ξ⇒

The asymptotic summation theorem 

Given bi ∈ Sm−i , i = 0, 1, . . . , there exists a b ∈ Sm such that 

b−
� 

. (5.2.2) bj ∈ Sm−i 

j<i 

Proof. Step 1. Let ℓ = m+ ǫ, ǫ > 0. Then 

|bi(x, ξ) < Ci ξ m−i = 
ci�
�
ξ

ξ

�
�
ℓ

ǫ 

−i 
. 

Thus, for some λi, 
1 |bi(x, ξ) < 
2i 
�ξ�ℓ−i 

for ξ > λi. We can assume that λi → +∞ as i . Let ρ ∈ C∞(R) be bounded between 0 and 1 and | | → +∞
satisfy ρ(t) = 0 for t < 1 and ρ(t) = 1 for t > 2. Let 

� |ξ|� 

b = 
� 

ρ bi(x, ξ) . (5.2.3) 
λi 

Then b is in C∞(T n × Rn) since, on any compact subset, only a finite number of summands are non-zero. 
Moreover, b−�j<i bj is equal to: 

�� 

ρ 

� |ξ|� 

− 1 

� 

bj + bi + 
� 

ρ 

� |ξ|� 

bj . 
λjj<i 

λj j>i 

The first summand is compactly supported, the second summand is in Sm−1 and the third summand is 
bounded from above by 

1 

2k 
�ξ�ℓ−k 

k>i 
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which is less than ξ ℓ−(i+1) and hence, for ǫ < 1, less than ξ m−i . 

Step 2.	 For α + β ≤ N choose λi so that | | | |

β	 β|DαDξ bi(x, ξ)
1 

x | ≤
2i 
�ξ�ℓ−i−| | 

for λi <	 ξ . Then the same argument as above implies that | |

β	 βDαDξ (b−
� 

bj ) ≤ CN ξ
m−i−| |	 (5.2.4) x 

j,i 

for α + β ≤ N .| | | |
Step 3. The sequence of λi’s in step 2 depends on N . To indicate this dependence let’s denote this sequence 
by λi,N , i = 0, 1, . . .. We can, by induction, assume that for all i, λi,N ≤ λi,N +1. Now apply the Cantor 
diagonal process to this collection of sequences, i.e., let λi = λi,i . Then b has the property (5.2.4) for all N . 

We will denote the fact that b has the property (5.2.2) by writing 

(5.2.5) b ∼
� 

bi . 

ℓThe symbol, b, is not unique, however, if b ∼ � 
bi and b′ ∼ � 

bi, b − b′ is in the intersection, 
� S , 

−∞ < ℓ < ∞. 

4.5.3 Pseudodifferential operators 

Given a ∈ Sm let 
T 0 )a : S → C∞(T n

be the operator 
ikx Ta 

0 g = 
� 

a(x, k)g(k)e . 

Since 
ikx|Dα a(x, k)e | ≤ Cα k m+�α� 

and 
|g(k)| ≤ Cα�k�−(m+n+ α +1) | |

this operator is well-defined, i.e., the right hand side is in C∞(T n). Composing T 0 with F we get an operator a 

Ta : C∞(T n ) .) → C∞(T n

We call Ta the pseudodifferential operator with symbol a. 

Note that 
Tae ikx = a(x, k)e ikx . 

Also note that if 

P =	
� 

aα(x)Dα (5.3.1) 
α ≤m| |

and 

p(x, ξ) =	
� 

aα(x)ξα . (5.3.2) 
α ≤m| |

Then 
P = Tp . 



�

4.5.4 The composition formula 

Let P be the differential operator (5.3.1). If a is in Sr we will show that PTa is a pseudodifferential operator 
of order m+ r. In fact we will show that 

PTa = Tp◦a (5.4.1) 

where 

1 β p ◦ a(x, ξ) = 
� 

∂ξ p(x, ξ)D
β a(x, ξ) (5.4.2) 

β! x 

α ≤m| |

and p(x, ξ) is the function (5.3.2). 

Proof. By definition 

PTae ikx = Pa(x, k)e ikx 

ikx(e−ikxPe ikx= e )a(x, k) . 

Thus PTa is the pseudodifferential operator with symbol 

e−ixξ Pe ixξ a(x, ξ) . (5.4.3) 

However, by (5.3.1): 

e−ixξ Pe ixξ u(x) = 
� 

aα(x)e−ixξ Dα e ixξ u(x) 

= 
� 

aα(x)(D + ξ)α u(x) 

= P (x,D + ξ)u(x) . 

Moreover, 
∂ 

p(x, η + ξ) = 
� 1 

∂ξβ 
p(x, ξ)ηβ ,

β! 
so 

∂ 
p(x,D + ξ)u(x) = 

� 1 

∂ξβ 
p(x, ξ)Dβ u(x)

β! 

and if we plug in a(x, ξ) for u(x) we get, by (5.4.3), the formula (5.4.2) for the symbol of PTa. 

4.5.5 The inversion formula 

Suppose now that the operator (5.3.1) is elliptic. We will prove below the following inversion theorem. 

Theorem. There exists an a ∈ S−m and an r ∈ � 
Sℓ , −∞ < ℓ < ∞, such that 

PTa = I − Tr . 

Proof. Let 

pm(x, ξ) = 
� 

aα(x)ξα . 
|α|=m 

By ellipticity pm(x, ξ) = 0 for ξ �∈ 0. Let ρ ∈ C∞(R) be a function satisfying ρ(t) = 0 for t < 1 and ρ(t) = 1 
for t > 2. Then the function 

1 
a0(x, ξ) = ρ(|ξ|) 

pm(x, ξ) 
(5.5.1) 

is well-defined and belongs to S−m . To prove the theorem we must prove that there exist symbols 
and r ∈ � Sℓ , −∞ < ℓ < ∞, such that 

a ∈ S−m 

= r . p ◦ q 1 −
We will deduce this from the following two lemmas. 
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Lemma. If b ∈ Si then 
b− p ◦ a0b 

is in Si−1 . 

Proof. Let q = p− pm. Then q ∈ Sm−1 so q ◦ a0b is in Si−1 and by (5.4.2) 

= pm ◦ a0b+ q ◦ a0bp ◦ a0b 
= pma0b + = b+· · · · · · 

where the dots are terms of order i− 1. 

Lemma. There exists a sequence of symbols ai ∈ S−m−i , i = 0, 1, . . ., and a sequence of symbols ri ∈ S−i , 
i = 0, . . . , such that a0 is the symbol (5.5.1), r0 = 1 and 

p ◦ ai = ri − ri+1 

for all i. 

Proof. Given a0, . . . , ai−1 and r0, . . . ri, let ai = ria0 and ri+1 = ri − p ◦ ai. By Lemma 4.5.5, ri+1 ∈ S−i−1 . 

Now let be the “asymptotic sum” of the ai’s a ∈ S−m


� 
ai .
a ∼

Then ∞
p ◦ a ∼

� 
p ◦ ai = 

� 
ri − ri=1 = r0 = 1 , 

i=1 

ℓso 1 − p ◦ a ∼ 0, i.e., r = 1 − p ◦ q is in 
� S , −∞ < ℓ < ∞. 

4.5.6 Smoothing properties of ΨDO’s 

Let ℓ , ℓ < −m− n. We will prove in this section that the sum a ∈ S
ik(x−y)Ka(x, y) = 

� 
a(x, k)e (5.6.1) 

is in Cm(T β × T n) and that Ta is the integral operator associated with Ka, i.e., 

Tau(x) = Ka(x, y)u(y) dy . 

Proof. For α + β ≤ m 
ik(x−y)

| | | |
DαDβ a(x, k)ex y 

ℓ+mis bounded by k ℓ+|α|+|β| and hence by k . But ℓ+ m < −n, so the sum 

ik(x−y)
� 

DαDβ a(x, k)ex y 

converges absolutely. Now notice that 
� 
Ka(x, y)e

iky dy = a(x, k)e ikx = Tαe ikx . 

Hence Ta is the integral operators defined by Ka. Let 

ℓS−∞ = 
� 

, −∞ < ℓ∞ . (5.6.2) S

If a is in S−∞, then by (5.6.1), Ta is a smoothing operator. 



| � �

�

�

� � � �

� �
� �

� �

4.5.7 Pseudolocality 

We will prove in this section that if f and g are C∞ functions on T n with non-overlapping supports and a 
is in Sm, then the operator 

fTagu (5.7.1) ) →u ∈ C∞(T n

is a smoothing operator. (This property of pseudodifferential operators is called pseudolocality.) We will 
first prove: 

Lemma. If a(x, ξ) is in Sm and w ∈ R
n, the function, 

aw (x, ξ) = a(x, ξ + w) − a(x, ξ) (5.7.2) 

is in Sm−1 .


Proof. Recall that a ∈ Sm if and only if


β |DαDξ a(x, ξ) ≤ Cα,β ξ
m−|β| .x 

mFrom this estimate is is clear that if a is in S , a(x, ξ + w) is in Sm and ∂a (x, ξ) is in Sm−1, and hence ∂ξi 

that the integral 
∂a 

aw (x, ξ) = 

� 1 � 
(x, ξ + tw) dt 

∂ξi0 i 

in Sm−1 . 
mNow let ℓ be a large positive integer and let a be in S , m < −n− ℓ. Then 

ik(x−y)Ka(x, y) = 
� 

a(x, k)e 

is in Cℓ(T n × T n), and Ta is the integral operator defined by Ka. Now notice that for w ∈ Zn 

ik(x−y)(e−i(x−y)w − 1)Ka(x, y) = 
� 

aw (x, k)e , (5.7.3) 

so by the lemma the left hand side of (5.7.3) is in Cℓ+1(T n × T n). More generally, 

(e−i(x−y)w − 1)N Ka(x, y) (5.7.4) 

is in Cℓ+N (T n × T n). In particular, if x = y, then for some 1 ≤ i ≤ n, xi − yi �≡ 0 mod 2πZ, so if 

w = (0, 0, . . . , 1, 0, . . . , 0) , 

(a “1” in the ith-slot), ei(x−y)w = 1 and, by (5.7.4), Ka(x, y) is Cℓ+N is a neighborhood of (x, y). Since N 
can be arbitrarily large we conclude 

Lemma. Ka(x, y) is a C∞ function on the complement of the diagonal in T n × T n . 

Thus if f and g are C∞ functions with non-overlapping support, fTag is the smoothing operator, TK , 
where 

K(x, y) = f(x)Ka(x, y)g(y) . (5.7.5) 

mWe have proved that Ta is pseudolocal if , m < −n− ℓ, ℓ a large positive integer. To get rid of a ∈ S
this assumption let D N be the operator with symbol ξ N . If N is an even positive integer 

N 
2�D� N = (

� 
D2 + I)i 

is a differential operator and hence is a local operator: if f and g have non-overlapping supports, f D N g is 
identically zero. Now let aN (x, ξ) = a(x, ξ) ξ −N . Since aN ∈ Sm−N , T is pseudolocal for N large. But aN 

Ta = TaN 
D N , so Ta is the composition of an operator which is pseudolocal with an operator which is local, 

and therefore Ta itself is pseudolocal. 



4.6 Elliptic operators on open subsets of T n 

Let U be an open subset of T n . We will denote by ιU : U T n the inclusion map and by ι∗→	 U : C∞(T n) → 
C∞(U) the restriction map: let V be an open subset of T n containing U and 

P =	
� 

aα(x)Dα , aα(x) ∈ C∞(V ) 
α ≤m| |

an elliptic mth order differential operator. Let 

P t =	
� 

Dα aα(x) 
α ≤m| |

be the transpose operator and 

Pm(x, ξ) = 
� 

aα(x)ξα 

|α|=m 

the symbol at P . We will prove below the following localized version of the inversion formula of 4.5.5. §
Theorem. There exist symbols, and r ∈ S−∞ such that a ∈ S−m 

U Ta = ι∗Pι∗ U (I − Tr ) . (4.6.1) 

Proof. Let γ ∈ C∞
0 (V ) be a function which is bounded between 0 and 1 and is identically 1 in a neighborhood 

of U . Let 
Q = PP tγ + (1 − γ)(

� 
Dι 

2)n . 

This is a globally defined 2mth order differential operator in T n with symbol, 

2mγ(x) Pm(x, ξ) 2 + (1 − γ(x)) ξ	 (4.6.2) | | | | 
and since (4.6.2) is non-vanishing on T n × (Rn − 0), this operator is elliptic. Hence, by Theorem 4.5.5, there 
exist symbols b ∈ S−2m and r ∈ S−∞ such that 

QTb = I − Tr . 

Let Ta = P tγTb. Then since γ ≡ 1 on a neighborhood of U , 

U (I − Tr) = ι∗ι∗ U QTb 

= ι∗ U (PP
tγTb + (1 − γ)

� 
Di 

2Tb) 

= ι∗ U PP
tγTb 

U P
tγTb = Pι∗= Pι∗ U Ta . 

4.7 Elliptic operators on compact manifolds 

Let X be a compact n dimensional manifold and 

P : C∞(X) → C∞(X) 

an elliptic mth order differential operator. We will show in this section how to construct a parametrix for P : 
an operator 

Q : C∞(X) → C∞(X) 

such that I − PQ is smoothing. 
Let Vi, i = 1, . . . , N be a covering of X by coordinate patches and let Ui, i = 1, . . . , N , U i ⊂ Vi be an 

open covering which refines this covering. We can, without loss of generality, assume that Vi is an open 
subset of the hypercube 

x ∈ R
n 0 < xi < 2π i = 1, . . . , n}{



and hence an open subset of T n . Let 

0 (Ui) , i = 1, . . . , N}{ρi ∈ C∞

be a partition of unity and let γi ∈ C∞
0 (Ui) be a function which is identically one on a neighborhood of the 

support of ρi. By Theorem 4.6, there exist symbols ai ∈ S−m and ri ∈ S−∞ such that on T n: 

Pι∗ Tai 
= ι∗ Ui 

(I − Tri 
) . (4.7.1) Ui 

Moreover, by pseudolocality (1 − γi)T ρi is smoothing, so ai 

Ui 
Tai 

ρiγiTai
ρi − ι∗ 

and 
PγiTai

ρi − Pι∗ Ui 
Tai 

ρi 

are smoothing. But by (4.7.1) 
Pι∗ Tai 

ρi − ρiIUi 

is smoothing. Hence 
PγiTai 

ρi − ρiI (4.7.2) 

is smoothing as an operator on T n . However, PγiTai 
ρi and ρiI are globally defined as operators on X and 

hence (4.7.2) is a globally defined smoothing operator. Now let Q = 
� 
γiTai 

ρi and note that by (4.7.2) 

PQ− I 

is a smoothing operator. 

This concludes the proof of Theorem 4.3, and hence, modulo proving Theorem 4.3. This concludes the 
proof of our main result: Theorem 4.2. The proof of Theorem 4.3 will be outlined, as a series of exercises, 
in the next section. 

4.8 The Fredholm theorem for smoothing operators 

Let X be a compact n-dimensional manifold equipped with a smooth non-vanishing measure, dx. Given 
let ×X)K ∈ C∞(X 

TK : C∞(X) → C∞(X) 

be the smoothing operator 3.1. 

Exercise 1. Let V be the volume of X (i.e., the integral of the constant function, 1, over X). Show that if 

ǫ 
max K(x, y)| <

V
, 0 < ǫ < 1|

then I − TK is invertible and its inverse is of the form, I − TL, L ∈ C∞(X ×X).

Hint 1. Let Ki = K K (i products). Show that sup |Ki(x, y) < Cǫi and conclude that the series
◦ · · · ◦ |

� 
Ki(x, y) (4.8.1) 

converges uniformly.

Hint 2. Let U and V be coordinate patches on X . Show that on U × V


DαDβ Ki(x, y) = Kα ◦Ki−2 ◦Kβ (x, y)x y 

where Kα(x, z) = DαK(x, z) and Kβ (z, y) = Dβ K(z, y). Conclude that not only does (8.1) converge on x y 
U × V but so do its partial derivatives of all orders with respect to x and y. 

Exercise 2. (finite rank operators.) TK is a finite rank smoothing operator if K is of the form: 

N

K(x, y) = 
� 

fi(x)gi(y) . (4.8.2) 
i=1 



� 

(a) Show that if TK is a finite rank smoothing operator and TL is any smoothing operator, TK TL and 
TLTK are finite rank smoothing operators. 

(b) Show that if TK is a finite rank smoothing operator, the operator, I−TK , has finite dimensional kernel 
and co-kernel. 

Hint. Show that if f is in the kernel of this operator, it is in the linear span of the fi’s and that f is in the 
image of this operator if 

f(y)gi(y) dy = 0 , i = 1, . . . , N . 

Exercise 3. Show that for every K ∈ C∞(X×X) and every ǫ > 0 there exists a function, K1 ∈ C∞(X×X) 
of the form (4.8.2) such that 

sup K −K1 (x, y) < ǫ . | |
Hint. Let A be the set of all functions of the form (4.8.2). Show that A is a subalgebra of C(X×X) and that 
this subalgebra separates points. Now apply the Stone–Weierstrass theorem to conclude that A is dense in 
C(X ×X). 
Exercise 4. Prove that if TK is a smoothing operator the operator 

I − TK : C∞(X) → C∞(X) 

has finite dimensional kernel and co-kernel. 
Hint. Show that K = K1 + K2 where K1 is of the form (4.8.2) and K2 satisfies the hypotheses of exercise 1. 
Let I − TL be the inverse of I − TK2 

. Show that the operators 

(I − TK ) ◦ (I − TL) 

(I − TL) ◦ (I − TK ) 

are both of the form: identity minus a finite rank smoothing operator. Conclude that I − TK has finite 
dimensional kernel and co-kernel. 

Exercise 5. Prove Theorem 4.3. 




