Lecture 16

Chapter 4

Elliptic Operators

This chapter by Victor Guillemin

4.1 Differential operators on \mathbb{R}^{n}

Let U be an open subset of \mathbb{R}^{n} and let D_{k} be the differential operator,

$$
\frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_{k}} .
$$

For every multi-index, $\alpha=\alpha_{1}, \ldots, \alpha_{n}$, we define

$$
D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}
$$

A differential operator of order r :

$$
P: \mathcal{C}^{\infty}(U) \rightarrow \mathcal{C}^{\infty}(U)
$$

is an operator of the form

$$
P u=\sum_{|\alpha| \leq r} a_{\alpha} D^{\alpha} u, \quad a_{\alpha} \in \mathcal{C}^{\infty}(U) .
$$

Here $|\alpha|=\alpha_{1}+\cdots \alpha_{n}$.
The symbol of P is roughly speaking its " r th order part". More explicitly it is the function on $U \times \mathbb{R}^{n}$ defined by

$$
(x, \xi) \rightarrow \sum_{|\alpha|=r} a_{\alpha}(x) \xi^{\alpha}=: p(x, \xi)
$$

The following property of symbols will be used to define the notion of "symbol" for differential operators on manifolds. Let $f: U \rightarrow \mathbb{R}$ be a \mathcal{C}^{∞} function.

Theorem. The operator

$$
u \in \mathcal{C}^{\infty}(U) \rightarrow e^{-i t f} P e^{i t f} u
$$

is a sum

$$
\begin{equation*}
\sum_{i=0}^{r} t^{r-i} P_{i} u \tag{4.1.1}
\end{equation*}
$$

P_{i} being a differential operator of order i which doesn't depend on t. Moreover, P_{0} is multiplication by the function

$$
p_{0}(x)=: P(x, \xi)
$$

with $\xi_{i}=\frac{\partial f}{\partial x_{i}}, i=1, \ldots n$.

Proof. It suffices to check this for the operators D^{α}. Consider first D_{k} :

$$
e^{-i t f} D_{k} e^{i t f} u=D_{k} u+t \frac{\partial f}{\partial x_{k}}
$$

Next consider D^{α}

$$
\begin{aligned}
e^{-i t f} D^{\alpha} e^{i t f} u & =e^{-i t f}\left(D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}\right) e^{i t f} u \\
& =\left(e^{-i t f} D_{1} e^{i t f}\right)^{\alpha_{1}} \cdots\left(e^{-i t f} D_{n} e^{i t f}\right)^{\alpha_{n}} u
\end{aligned}
$$

which is by the above

$$
\left(D_{1}+t \frac{\partial f}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(D_{n}+t \frac{\partial f}{2 x_{n}}\right)^{\alpha_{n}}
$$

and is clearly of the form (4.1.1). Moreover the t^{r} term of this operator is just multiplication by

$$
\begin{equation*}
\left(\frac{\partial}{\partial x_{1}} f\right)^{\alpha_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}} . \tag{4.1.2}
\end{equation*}
$$

Corollary. If P and Q are differential operators and $p(x, \xi)$ and $q(x, \xi)$ their symbols, the symbol of $P Q$ is $p(x, \xi) q(x, s)$.
Proof. Suppose P is of the order r and Q of the order s. Then

$$
\begin{aligned}
e^{-i t f} P Q e^{i t f} u & =\left(e^{-i t f} P e^{i t f}\right)\left(e^{-i t f} Q e^{i t f}\right) u \\
& =\left(p(x, d f) t^{r}+\cdots\right)\left(q(x, d f) t^{s}+\cdots\right) u \\
& =\left(p(x, d f) q(x, d f) t^{r+s}+\cdots\right) u
\end{aligned}
$$

Given a differential operator

$$
P=\sum_{|\alpha| \leq r} a_{\alpha} D^{\alpha}
$$

we define its transpose to be the operator

$$
u \in \mathcal{C}^{\infty}(U) \rightarrow \sum_{|\alpha| \leq r} D^{\alpha} \bar{a}_{\alpha} u=: P^{t} u
$$

Theorem. For $u, v \in \mathcal{C}_{0}^{\infty}(U)$

$$
\langle P u, v\rangle=: \int P u \bar{v} d x=\left\langle u, P^{t}\right\rangle .
$$

Proof. By integration by parts

$$
\begin{aligned}
\left\langle D_{k} u, v\right\rangle & =\int D_{k} u \bar{v} d x=\frac{1}{\sqrt{-1}} \int \frac{\partial}{\partial x_{k}} u \bar{v} d k \\
& =-\frac{1}{\sqrt{-1}} \int u \frac{\partial}{\partial x_{k}} \bar{v} d x=\int u \overline{D_{k} v} d x \\
& =\left\langle u, d_{k} v\right\rangle
\end{aligned}
$$

Thus

$$
\left\langle D^{\alpha} u, v\right\rangle=\left\langle u, D^{\alpha} v\right\rangle
$$

and

$$
\left\langle a_{\alpha} D^{\alpha} u, v\right\rangle=\left\langle D^{\alpha} u, \bar{a}_{\alpha} v\right\rangle=\left\langle u, D^{\alpha} \bar{a}_{\alpha} v\right\rangle,
$$

Exercises.

If $p(x, \xi)$ is the symbol of $P, \bar{p}(x, \xi)$ is the symbol of p^{t}.

Ellipticity.

P is elliptic if $p(x, \xi) \notin 0$ for all $x \in U$ and $\xi \in \mathbb{R}^{n}-0$.

4.2 Differential operators on manifolds.

Let U and V be open subsets of \mathbb{R}^{n} and $\varphi: U \rightarrow V$ a diffeomorphism.
Claim. If P is a differential operator of order m on U the operator

$$
u \in \mathcal{C}^{\infty}(V) \rightarrow\left(\varphi^{-1}\right)^{*} P \varphi^{*} u
$$

is a differential operator of order m on V.
Proof. $\left(\varphi^{-1}\right)^{*} D^{\alpha} \varphi^{*}=\left(\left(\varphi^{-1}\right)^{*} D_{1} \varphi^{*}\right)^{\alpha_{1}} \cdots\left(\left(\alpha^{-1}\right)^{*} D_{n} \varphi^{*}\right)^{\alpha_{n}}$ so it suffices to check this for D_{k} and for D_{k} this follows from the chain rule

$$
D_{k} \varphi^{*} f=\sum \frac{\partial \varphi_{i}}{\partial x_{k}} \varphi^{*} D_{i} f
$$

This invariance under coordinate changes means we can define differential operators on manifolds.
Definition. Let $X=X^{n}$ be a real \mathcal{C}^{∞} manifold. An operator, $P: \mathcal{C}^{\infty}(X) \rightarrow \mathcal{C}^{\infty}(X)$, is an $m^{\text {th }}$ order differential operator if, for every coordinate patch, $\left(U, x_{1}, \ldots, x_{n}\right)$ the restriction map

$$
u \in \mathcal{C}^{\infty}(X) \rightarrow P u 1 U
$$

is given by an $m^{\text {th }}$ order differential operator, i.e., restricted to U,

$$
P u=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha} u, \quad a_{\alpha} \in \mathcal{C}^{\infty}(U)
$$

Remark. Note that this is a non-vacuous definition. More explicitly let $\left(U, x_{1}, \ldots, x_{n}\right)$ and $\left(U^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ be coordinate patches. Then the map

$$
u \rightarrow P u 1 U \cap U^{\prime}
$$

is a differential operator of order m in the x-coordinates if and only if it's a differential operator in the x^{\prime}-coordinates.

The symbol of a differential operator

Theorem. Let $f: X \rightarrow \mathbb{R}$ be \mathcal{C}^{∞} function. Then the operator

$$
u \in \mathcal{C}^{\infty}(X) \rightarrow e^{-i t f} P e^{-i t f} u
$$

can be written as a sum

$$
\sum_{i=0}^{m} t^{m-i} P_{i}
$$

P_{i} being a differential operator of order i which doesn't depend on t.
Proof. We have to check that for every coordinate patch $\left(U, x_{1}, \ldots, x_{n}\right)$ the operator

$$
u \in \mathcal{C}^{\infty}(X) \rightarrow e^{-i t f} P e^{i t f} 1 U
$$

has this property. This, however, follows from Theorem 4.1.

In particular, the operator, P_{0}, is a zero ${ }^{\text {th }}$ order operator, i.e., multiplication by a \mathcal{C}^{∞} function, p_{0}.
Theorem. There exists \mathcal{C}^{∞} function

$$
\sigma(P): T^{*} X \rightarrow \mathbb{C}
$$

not depending on f such that

$$
\begin{equation*}
p_{0}(x)=\sigma(P)(x, \xi) \tag{4.2.1}
\end{equation*}
$$

with $\xi=d f_{x}$.
Proof. It's clear that the function, $\sigma(P)$, is uniquely determined at the points, $\xi \in T_{x}^{*}$ by the property (4.2.1), so it suffices to prove the local existence of such a function on a neighborhood of x. Let $\left(U, x_{1}, \ldots, x_{n}\right)$ be a coordinate patch centered at x and let ξ_{1}, \ldots, ξ_{n} be the cotangent coordinates on $T^{*} U$ defined by

$$
\xi \rightarrow \xi_{1} d x_{1}+\cdots+\xi_{n} d k_{n}
$$

Then if

$$
P=\sum a_{\alpha} D^{\alpha}
$$

on U the function, $\sigma(P)$, is given in these coordinates by $p(x, \xi)=\sum a_{\alpha}(x) \xi^{\alpha}$. (See (4.1.2).)

Composition and transposes

If P and Q are differential operators of degree r and $s, P Q$ is a differential operator of degree $r+s$, and $\sigma(P Q)=\sigma(P) \sigma(Q)$.

Let \mathcal{F}_{X} be the sigma field of Borel subsets of X. A measure, $d x$, on X is a measure on this sigma field. A measure, $d x$, is smooth if for every coordinate patch

$$
\left(U, x_{1}, \ldots, x_{n}\right)
$$

The restriction of $d x$ to U is of the form

$$
\begin{equation*}
\varphi d x_{1} \ldots d x_{n} \tag{4.2.2}
\end{equation*}
$$

φ being a non-negative \mathcal{C}^{∞} function and $d x_{1} \ldots d x_{n}$ being Lebesgue measure on $U . d x$ is non-vanishing if the φ in (4.2.2) is strictly positive.

Assume $d x$ is such a measure. Given u and $v \in \mathcal{C}_{0}^{\infty}(X)$ one defines the L^{2} inner product

$$
\langle u, v\rangle
$$

of u and v to be the integral

$$
\langle u, v\rangle=\int u \bar{v} d x
$$

Theorem. If $P: \mathcal{C}^{\infty}(X) \rightarrow \mathcal{C}^{\infty}(X)$ is an $m^{\text {th }}$ order differential operator there is a unique $m^{\text {th }}$ order differential operator, P^{t}, having the property

$$
\langle P u, v\rangle=\left\langle u, P^{t} v\right\rangle
$$

for all $u, v \in \mathcal{C}_{0}^{\infty}(X)$.
Proof. Let's assume that the support of u is contained in a coordinate patch, $\left(U, x_{1}, \ldots, x_{n}\right)$. Suppose that on U

$$
P=\sum a_{\alpha} D^{\alpha}
$$

and

$$
d x=\varphi d x_{1} \ldots d x_{n}
$$

Then

$$
\begin{aligned}
\langle P u, v\rangle & =\sum_{\alpha} \int a_{\alpha} D^{\alpha} u \bar{v} \varphi d x_{1} \ldots d x_{n} \\
& =\sum_{\alpha} \int a_{\alpha} \varphi D^{\alpha} u \bar{v} d x_{1} \ldots d x_{n} \\
& =\sum \int u \overline{D^{\alpha} \bar{a}_{\alpha} \varphi v} d x_{1} \ldots d x_{n} \\
& =\sum \int u \frac{1}{\varphi} D^{\alpha} \varphi v \varphi d x_{1} \ldots d x_{n} \\
& =\left\langle u, P^{t} v\right\rangle
\end{aligned}
$$

where

$$
P^{t} v=\frac{1}{\varphi} \sum D^{\alpha} \bar{a}_{\alpha} \varphi v
$$

This proves the local existence and local uniqueness of P^{t} (and hence the global existence of $P^{t}!$).

Exercise.

$\sigma\left(P^{t}\right)(x, \xi)=\overline{\sigma(P)(x, \xi)}$.

Ellipticity.

P is elliptic if $\sigma(P)(x, \xi) \neq 0$ for all $x \in X$ and $\xi \in T_{x}^{*}-0$.
The main goal of these notes will be to prove:
Theorem (Fredholm theorem for elliptic operators.). If X is compact and

$$
P: \mathcal{C}^{\infty}(X) \rightarrow \mathcal{C}^{\infty}(X)
$$

is an elliptic differential operator, the kernel of P is finite dimensional and $u \in \mathcal{C}^{\infty}(X)$ is in the range of P if and only if

$$
\langle u, v\rangle=0
$$

for all v in the kernel of P^{t}.
Remark. Since P^{t} is also elliptic its kernel is finite dimensional.

