Lecture 15

Homework problem number 2. X a complex manifold. We know we have the splitting

$$
\Omega^{r}(X)=\bigoplus_{p+q} \Omega^{p, q}(X) \quad d=\partial+\bar{\partial}
$$

We get the Dolbeault complex $\Omega^{0,0}(X) \xrightarrow{\bar{o}} \Omega^{0,1}(X) \xrightarrow{\bar{o}} \ldots$ and for every p we get a generalized Dolbeault complex

$$
\Omega^{p, 0}(X) \xrightarrow{\bar{\partial}} \Omega^{p, 1}(X) \xrightarrow{\bar{\partial}} \Omega^{p, 2}(X) \xrightarrow{\bar{\partial}} \cdots
$$

this is the p-Dolbeault complex. Take $\operatorname{ker} \bar{\partial}: \Omega^{0,0}(X) \rightarrow \Omega^{0,1}(X)$ this is $\mathcal{O}(X)$ and in general ker $\bar{\partial}$: $\Omega^{p, 0}(X) \rightarrow \Omega^{p, 1}(X)$. Call this $A^{p}(X)$. For $\mu \in A^{p}(X)$ pick a coordinate patch $\left(U, z_{1}, \ldots, z_{n}\right)$ then

$$
\mu=\sum f_{I}(z) d z_{i_{1}} \wedge \cdots \wedge d z_{i_{p}}
$$

and $\bar{\partial} \mu=0$ implies that $\bar{\partial} f_{I}=0$, so $f_{I} \in \mathcal{O}(U)$. These A^{p} are called the holomorphic de Rham complex.
More general, take U open in X. Then $\mathcal{A}^{p}(X)$ defines a sheaf \mathcal{A}^{p} on X.
Exercise Let $U=\left\{U_{i}, i \in I\right\}$ be a cover of X by pseudoconvex open sets. Show that the Cech cohomology group $H^{q}\left(U, \mathcal{A}^{p}\right)$ coincide with the cohomology groups of

$$
\Omega^{p, 0}(X) \xrightarrow{\bar{\partial}} \Omega^{p, 1}(X) \xrightarrow{\bar{\partial}} \Omega^{p, 2}(X) \xrightarrow{\bar{\partial}} \cdots
$$

We did the special case $p=0$, i.e. we showed $H^{q}(U, \mathcal{O}) \cong$ the Dolbeault complex.
The idea is to reduce this to the following exercise in diagram chasing. Let $C=\bigoplus C^{i, j}$ be a bigraded vector space with commuting coboundary operators $\delta: C^{i, j} \rightarrow C^{i+1, j}$ and $d: C^{i, j} \rightarrow C^{i, j+1}$.

Let $V_{i}=\operatorname{ker} d_{i}: C^{i, 0} \rightarrow C^{i, 1}$. Note that since $d \delta=\delta d$ that $\delta V_{i} \subset V_{i+1}$. Also let $W=\operatorname{ker} \delta_{i}: C^{0, i} \rightarrow C^{1, i}$ and $d W_{i} \subset W_{i+1}$.
Theorem. Suppose that the sequence

$$
C^{0, i} \xrightarrow{\delta} C^{1, i} \xrightarrow{\delta} C^{2, i} \xrightarrow{\delta} \cdots
$$

and the sequence

$$
C^{i, 0} \xrightarrow{d} C^{i, 1} \xrightarrow{d} C^{i, 2} \xrightarrow{d} \cdots
$$

are exact for all i. Prove that the cohomology groups of

$$
0 \longrightarrow V_{0} \xrightarrow{\delta} V_{1} \xrightarrow{\delta} V_{2} 7 \xrightarrow{\delta} \cdots
$$

and

$$
0 \longrightarrow W_{0} \xrightarrow{d} W_{1} \xrightarrow{d} W_{2} \xrightarrow{d} \cdots
$$

are isomorphic.

