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Lecture 13 

X2n a real C∞ manifold. Have ω ∈ Ω2(X), with ω closed.


=
For p ∈ X we saw last time that Λ2(Tp
∗) ∼ Alt2(Tp), so ωp ↔ Bp. 

Definition. ω is symplectic if for every point p, Bp is non-degenerate. 

Remark: Alternatively ω is symplectic if and only if ωn is a volume form. i.e. ωn = 0 for all p.p 

Theorem (Darboux Theorem). If ω is symplectic then for every p ∈ X there exists a coordinate patch 
(U, x1, . . . , xn, y1, . . . , yn) centered at p such that on U 

ω = 
� 

dxi ∧ dyi 

(in Anna Cannas notes) 

Suppose X2n is a complex n-dimensional manifold. Then for p ∈ X , TpX is a complex n-dimensional 

vector space. So there exists an R-linear map Jp : Tp → Tp, Jpv = 
√
−1v with J2 = −I.p 

Definition. ω symplectic is Kahler if for every p ∈ X , Bp and Jp are compatible and the quadratic form 

Qp(v, w) = Bp(v, Jpw) 

is positive definite. 

This Qp is a positive definite symmetric bilinear form on Tp for all p, so X is a Riemannian manifold as 
well. 

We saw earlier that Jp and Bp are compatible is equivalent to the assumption that ω ∈ Λ1,1(Tp
∗). 

Last time we say there was a mapping 

= 
ρ : (T ∗)1,0 ⊗ (T ∗)0,1 

∼
Λ1,1(Tp 

∗) Hp ↔ ωp−→ 
The condition ω̄p = ωp tells us that Hp is a hermitian bilinear form on Tp. The condition that Qp is positive 
definite implies that Hp is positive definite. 

Let (U, z1, . . . , zn) be a coordinate patch on X 

ω = 
√
−1
� 

hij dzi ∧ dz̄j hi,j ∈ C∞(U) 

so 
Hp = 

� 
hij (p)(dzi)p ⊗ (dz̄j )p 

the condition that Hp ≫ 0 (≫ means positive definite) implies that hij (p) ≫ 0. 
What about the Riemannian structure? The Riemannian arc-length on U is given by 

ds 2 = 
� 

hij dzidz̄j 

Darboux Theorem for Kahler Manifolds 

Let (U, z1, . . . , zn) be a coordinate patch on X , let U be biholomorphic to a polydisk z1 < ǫ1, . . . , zn < ǫn.| | | |
Let ω ∈ Ω1,1(U), dω = 0 be a Kaehler form. dω = 0 implies that ∂ω = ∂ω = 0, which implies (by a theorem 
we proved earlier) that for some F 

ω = 
√
−1∂∂F F ∈ C∞(U) 

(it followed from the exactness of the Dolbeault complex). Also, since ω = ω we get that 

ω = ω = −
√
−1∂∂F = 

√
−1∂∂F 

So replacing F by 1 
2 (F + F ) we can assume that F is real-valued. Moreover 

∂2F 
ω = 

√
−1∂∂F = 

√
−1
� 

∂zi∂z̄j 
dzi ∧ dz̄j 



so we conclude that 
∂2F 

(p) ≫ 0 
∂zi∂z̄j 

for all p ∈ U , i.e. F ∈ C∞(U)is a strictly plurisubharmonic function.

So we’ve proved


Theorem (Darboux). If ω is a Kahler form then for every poiont p ∈ X there exists a coordinate patch 

(U, z1, . . . , zn) cenetered at p and a strictly plurisubharmonic function F on U such that on U , ω = 
√
−1∂∂F . 

All of the local structure is locally encoded in F , the symplectic form, the Kahler form etc. 

Definition. F is called the potential function 

This function is not unique, but how not-unique is it? 
Let U be a simply connected open subset of X and let F1, F2 ∈ C∞(U) be potential functions for the 

Kahler metric. Let G = F1 − F2. If ∂∂F1 = ∂∂F2 then ∂∂G = 0. Now, ∂∂G = 0 implies that d∂G = 0, so 
∂G is a closed 1-form. U simply connected implies that there exists an H ∈ C∞(U) so that ∂G = dH , so 

∂G = ∂H , and ∂H = 0. 
Let K1 = G − H , K2 = Ten G = K1 + K2. But G is real-valued, so G = G so H , K1, K2 ∈ O. 

K1 + K2 = K1 + K2 which implies K1 −K2 = K1 −K2 so K1 −K2 is a real-valued holomorphic function 
on U . But real valued and holomorphic implies that the function is constant. Thus K1 −K2 is a constant. 
Adjusting this constant we get that K1 = K2. 

Let K = K1 = K2, then G = K + K. 

Theorem. If F1 and F2 are potential functions for the Kahler metric ω on U thenm F1 = F2 + (K + K) 
where K ∈ O(U). 

Definition. Let X be a complex manifold, U any open subset of X . F ∈ C∞(U), F is strictly plurisubhar
monic if 

√
−1∂∂F = ω is a Kahler form on U . This is the coordinate free definition of s.p.s.h 

Definition. An open set U of X is pseudoconvex if it admits a s.p.s.h. exhaustion function. 

Remarks: U is pseudoconvex if the Dolbeault complex is exact. 

Definition. X is a stein manifold if it is pseudoconvex 

Examples of Kaehler Manifolds 

21. Cn . Let F = z 2 = z1 + + zn
2 and then | | | | · · · | |

√
−1∂∂f = 

√
−1
� 

dzi ∧ dz̄j = ω 

and if we say zi = xi + 
√
−1y then 

ω = 2
� 

dxi ∧ dyi 
then standard Darboux form. 

2. Stein manifolds. 

3. Complex submanifolds of Kaehler manifolds. We claim that if Xn is a complex manifold, Y k a complex 
submanifold in X if ι : Y X is an inclusion. Then → 
(a) If ω is a Kaehler form on X , ι∗ω is a Kaehler form. 

(b) If U is an open subset of X and F ∈ C∞(U) is a potential function for ω on U the ι∗F is a 
potential function for the form ι∗ω on U ∩ Y . 

b) implies a), so it suffices to prove b). Let (U, z1, . . . , zn) be a coordinate chart adapted for Y , i.e 
Y ∩ U is defined by zk+1 = = zn = 0. ω = 

√
−1∂∂F on U , so since ι is holomorphic it commutes · · · 

with ∂, ∂. Then 
ι∗ω = 

√
−1∂∂ι∗F ι∗F = F (z1, . . . , zk , 0, . . . , 0) 

To see this is Kaehler we need only check that ι∗F is s.p.s.h. Take p ∈ U ∩ Y . We consider the matrix 

� 
∂2F 

� 

(p) 1 ≤ i, j ≤ k 
∂zi∂z̄j 

But this is the principle k × k minor of 

� 
∂2F 

� 

(p) 1 ≤ i, j ≤ n 
∂zi∂z̄j 

and the last matrix is positive definite, by definition (and since its a hermitian matrix its principle 
k × k minors are positive definite) 

4. All non-singular affine algebraic varieties. 




