
Chapter 3


Symplectic and Kaehler Geometry


Lecture 12 

Today: Symplectic geometry and Kaehler geometry, the linear aspects anyway. 

Symplectic Geometry 

Let V be an n dimensional vector space over R, B : V × V R a bilineare form on V .→ 
Definition. B is alternating if B(v, w) = −B(w, v). Denote by Alt2(V ) the space of all alternating bilinear 
forms on V . 

Definition. Take any B ∈ Alt(V ), U a subspace of V . Then we can define the orthogonal complement by 

U⊥ = {v ∈ V,B(u, v) = 0, ∀u ∈ U} 

Definition. B is non-degenerate if V ⊥ = {0}. 
Theorem. If B is non-degenerate then dim V is even. Moeover, there exists a basis e1, . . . , en, f1, . . . , fn of 
V such that B(ei, en) = B(fi, fj ) = 0 and B(ei, fj ) = δij 

Definition. B is non-degenerate if and only if the pair (V,B) is a symplectic vector space. Then ei’s and 
fj ’s are called a Darboux basis of V . 

Let B be non-degenerate and U a vector subspace of V 
Remark: 
dim U⊥ = 2n− dim V and we have the following 3 scenarios. 

1. U isotropic ⇔ U⊥ ⊃ U . This implies that dim U ≤ n 

2. U Lagrangian ⇔ U⊥ = U . This implies dim U = n. 

3. U symplectic ⇔ U⊥∩U = ∅. This implies that U⊥ is symplectic and B U and B U ⊥ are non-degenerate. | |
Let V = V m be a vector space over R we have 

Alt2(V ) ∼= Λ2(V ∗) 

is a canonical identification. Let v1, . . . , vm be a basis of v, then 

Alt2
1 � 

B(vi, vj )vi 
∗ ∧ vj∗(V ) ∋ B 7→ 

2 

and the inverse Λ2(V ∗) ∋ ω 7→ Bω ∈ Alt2(V ) is given by 

B(v, w) = iW (iV ω) 

Suppose m = 2n. 



6Theorem. B ∈ Alt2(V ) is non-degenerate if ωB ∈ Λ2(V ) satisfies ωn = 0B 

1/2 of Proof. B non-degenerate, let e1, . . . , fn be a Darboux basis of V then 

ωB = 
� 

ei 
∗ ∧ fj∗ 

and we can show 
ωn = n!e∗ = 0B 1 ∧ f∗ 

n ∧ f∗ 
n1 ∧ · · · ∧ e∗ 6

Notation. ω ∈ Λ2(V ∗), symplectic geometers just say “Bω (v, w) = ω(v, w)”. 

Kaehler spaces 

V = V 2n , V a vector space over R, B ∈ Alt2(V ) is non-generate. Assume we have another piece of structure 
a map J : V → V that is R-linear and J2 = −I. 
Definition. B and J are compatible if B(v, w) = B(Jv, Jw). 

Exercise(not to be handed in) Let Q(v, w) = B(v, Jw) show that B and J are compatible if and only if 
Q is symmetric. 

From J we can make V a vector space over C by setting 
√
−1v = Jv. So this gives V a structure of 

complex n-dimensional vector space. 

Definition. Take the bilinear form H : V × V C by →
1 

H(v, w) = √−1
(B(v, w) + 

√
−1Q(v, w)) 

B and J are compatible if and only if H is hermitian on the complex vector space V . Note that 
H(v, v) = Q(v, v). 

Definition. V, J,B is Kahler if either H is positive definite or Q is positive definite (these two are equivalent). 

Consider V ∗ ⊗ C = HomR(V,C), so if l ∈ V ∗ ⊗ C then l : V C.→

Definition. l ∈ (V ∗)1,0 if it is C-linear, i.e. l(Jv) = 
√
−1l(v). And l ∈ (V ∗)0,1 if it is C-antilinear, i.e. 

l(Jv) = −
√
−1l(v). 

¯Definition. lv = l(v). J∗l(v) = lJ(v). 

¯Then if l ∈ (V ∗)1,0 then l ∈ (V ∗)0,1 . If l ∈ (V ∗)1,0 then J∗l = 
√
−1l, l ∈ (V ∗)0,1 , J∗l = −

√
−1l. 

So we can decompose V ∗ ⊗ C = (V ∗)1,0 ⊕ (V ∗)0,1 i.e. decomposing into ±
√
−1 eigenspace of J∗ and 

(V ∗)0,1 = (V ∗)0,1 . 
This decomposition gives a decomposition of the exterior algebra, Λr(V ∗ ⊗ C) = Λr (V ∗) ⊗ C. Now, this 

decomposes into bigraded pieces 

Λr (V ∗ ⊗ C) 
� 

Λk,l(V ∗)= 
k+l=r 

Λk,l(V ∗) is the linear span of k, l forms of the form 

νl µiνj ∈ (V ∗)1,0 µ1 ∧ · · · ∧ µk ∧ ν̄1 ∧ · · · ∧ ¯

Note that J∗ : V ∗ ⊗ C → V ∗ ⊗ C can be extended to a map J∗ : Λr (V ∗ Λr(V ∗ ⊗ C) by setting ⊗ C) →
=J∗(l1 ∧ · · · ∧ lr ) J∗l1 ∧ · · · ∧ J∗lr 

on decomposable elements l1 ∧ · · · ∧ lr ∈ Λr . 
We can define complex conjugation on Λr (V ∗ ⊗ C) on decomposable elements ω = by 
¯ ¯

l1 ∧ · · · ∧ lr 

ω̄ = lr. 
Λr(V ∗ ⊗C) = Λr(V )⊗C, then ¯ ω ∈ Λl,k(V ∗) 
l1 ∧ · · · ∧ 

ω = ω if and only if ω ∈ Λr(V ∗) . And if ω ∈ Λk,l(V ∗) then ¯
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Proposition. On Λk,l(V ∗) we have J∗ = (
√
−1)k−l Id. 

Proof. Take ω = νl, µi, νi ∈ (V ∗)1,0 then µ1 ∧ · · · ∧ µk ∧ ν̄1 ∧ · · · ∧ ¯

J∗ω = J∗µ1 ∧ · · · ∧ J∗µk ∧ J∗ν̄1 ∧ · · · ∧ J∗ν̄l = (−1)k (−
√
−1)lω 

Notice that for the following decomposition of Λ2(V ⊗ C) the eigenvalues of J∗ are given below 

Λ2(V ⊗ C) = Λ2,0 ⊕Λ1,1 ⊕Λ0,2 

� �� � ���� ���� ���� 
1 −1 −1J∗ 

So if ω ∈ Λ∗(V ∗ ⊗ C) then if Jω = ω. 
Now, back to serious Kahler stuff. 
Let V,B, J be Kahler. B 7→ ωB ∈ Λ2(V ∗) ⊂ Λ2(V ∗) ⊗ C. 
B is J invariant, so ωB is J-invariant, which happens if and only if ωB ∈ Λ1,1(V ∗) and ωB is real if and 

¯only if ωB = ωB . 
So there is a -1 correspondence between J invariant elements of Λ2(V ) and elements ω ∈ Λ1,1(V ∗) which 

are real. 
Observe: (V ∗)1,0 ⊗ V ∗)0,1 

ρ 
Let µ1, . . . , µn be a basis of (V ∗)1,0 . Take −→ Λ1,1(V ∗) by µ⊗ ν 7→ µ ∧ ν. 

µj ∈ (V ∗)1,0 ⊗ (V ∗)0,1α = 
� 

aij µi ⊗ ¯

Take 
ρ(α) = 

� 
aij µi ∧ µ̄j 

1is it true that ρ(α) = ρ(α). No, not always. This happens if aij = −aij , equivalently √−1
[aij ] is Hermitian. 

We have 
Alt2 = ωB ∈ Λ1,1(V ∗)(V ) ∋ B 7→ ω 

1Take α = ρ−1(ω), H = √−1 
α. Then H is Hermitian. 

1Check that H = √−1
(B + 

√
−1Q), B Kahler iff and only if H is positive definite. 


