Chapter 3

Symplectic and Kaehler Geometry

Lecture 12

Today: Symplectic geometry and Kaehler geometry, the linear aspects anyway.

Symplectic Geometry

Let V be an n dimensional vector space over $\mathbb{R}, B: V \times V \rightarrow \mathbb{R}$ a bilineare form on V.
Definition. B is alternating if $B(v, w)=-B(w, v)$. Denote by $\operatorname{Alt}^{2}(V)$ the space of all alternating bilinear forms on V.
Definition. Take any $B \in \operatorname{Alt}(V), U$ a subspace of V. Then we can define the orthogonal complement by

$$
U^{\perp}=\{v \in V, B(u, v)=0, \forall u \in U\}
$$

Definition. B is non-degenerate if $V^{\perp}=\{0\}$.
Theorem. If B is non-degenerate then $\operatorname{dim} V$ is even. Moeover, there exists a basis $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}$ of V such that $B\left(e_{i}, e_{n}\right)=B\left(f_{i}, f_{j}\right)=0$ and $B\left(e_{i}, f_{j}\right)=\delta_{i j}$

Definition. B is non-degenerate if and only if the pair (V, B) is a symplectic vector space. Then e_{i} 's and f_{j} 's are called a Darboux basis of V.

Let B be non-degenerate and U a vector subspace of V
Remark:
$\operatorname{dim} U^{\perp}=2 n-\operatorname{dim} V$ and we have the following 3 scenarios.

1. U isotropic $\Leftrightarrow U^{\perp} \supset U$. This implies that $\operatorname{dim} U \leq n$
2. U Lagrangian $\Leftrightarrow U^{\perp}=U$. This implies $\operatorname{dim} U=n$.
3. U symplectic $\Leftrightarrow U^{\perp} \cap U=\emptyset$. This implies that U^{\perp} is symplectic and $\left.B\right|_{U}$ and $\left.B\right|_{U \perp}$ are non-degenerate.

Let $V=V^{m}$ be a vector space over \mathbb{R} we have

$$
\operatorname{Alt}^{2}(V) \cong \Lambda^{2}\left(V^{*}\right)
$$

is a canonical identification. Let v_{1}, \ldots, v_{m} be a basis of v, then

$$
\operatorname{Alt}^{2}(V) \ni B \mapsto \frac{1}{2} \sum B\left(v_{i}, v_{j}\right) v_{i}^{*} \wedge v_{j}^{*}
$$

and the inverse $\Lambda^{2}\left(V^{*}\right) \ni \omega \mapsto B_{\omega} \in \operatorname{Alt}^{2}(V)$ is given by

$$
B(v, w)=i_{W}\left(i_{V} \omega\right)
$$

Suppose $m=2 n$.

Theorem. $B \in \operatorname{Alt}^{2}(V)$ is non-degenerate if $\omega_{B} \in \Lambda^{2}(V)$ satisfies $\omega_{B}^{n} \neq 0$
$1 / 2$ of Proof. B non-degenerate, let e_{1}, \ldots, f_{n} be a Darboux basis of V then

$$
\omega_{B}=\sum e_{i}^{*} \wedge f_{j}^{*}
$$

and we can show

$$
\omega_{B}^{n}=n!e_{1}^{*} \wedge f_{1}^{*} \wedge \cdots \wedge e_{n}^{*} \wedge f_{n}^{*} \neq 0
$$

Notation. $\omega \in \Lambda^{2}\left(V^{*}\right)$, symplectic geometers just say " $B_{\omega}(v, w)=\omega(v, w)$ ".

Kaehler spaces

$V=V^{2 n}, V$ a vector space over $R, B \in \operatorname{Alt}^{2}(V)$ is non-generate. Assume we have another piece of structure a map $J: V \rightarrow V$ that is \mathbb{R}-linear and $J^{2}=-I$.

Definition. B and J are compatible if $B(v, w)=B(J v, J w)$.
Exercise(not to be handed in) Let $Q(v, w)=B(v, J w)$ show that B and J are compatible if and only if Q is symmetric.

From J we can make V a vector space over \mathbb{C} by setting $\sqrt{-1} v=J v$. So this gives V a structure of complex n-dimensional vector space.
Definition. Take the bilinear form $H: V \times V \rightarrow \mathbb{C}$ by

$$
H(v, w)=\frac{1}{\sqrt{-1}}(B(v, w)+\sqrt{-1} Q(v, w))
$$

B and J are compatible if and only if H is hermitian on the complex vector space V. Note that $H(v, v)=Q(v, v)$.
Definition. V, J, B is Kahler if either H is positive definite or Q is positive definite (these two are equivalent).
Consider $V^{*} \otimes \mathbb{C}=\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$, so if $l \in V^{*} \otimes \mathbb{C}$ then $l: V \rightarrow \mathbb{C}$.
Definition. $l \in\left(V^{*}\right)^{1,0}$ if it is \mathbb{C}-linear, i.e. $l(J v)=\sqrt{-1} l(v)$. And $l \in\left(V^{*}\right)^{0,1}$ if it is \mathbb{C}-antilinear, i.e. $l(J v)=-\sqrt{-1} l(v)$.

Definition. $\bar{l} v=\overline{l(v)} . \quad J^{*} l(v)=l J(v)$.
Then if $l \in\left(V^{*}\right)^{1,0}$ then $\bar{l} \in\left(V^{*}\right)^{0,1}$. If $l \in\left(V^{*}\right)^{1,0}$ then $J^{*} l=\sqrt{-1} l, l \in\left(V^{*}\right)^{0,1}, J^{*} l=-\sqrt{-1} l$.
So we can decompose $V^{*} \otimes \mathbb{C}=\left(V^{*}\right)^{1,0} \oplus\left(V^{*}\right)^{0,1}$ i.e. decomposing into $\pm \sqrt{-1}$ eigenspace of J^{*} and $\left(V^{*}\right)^{0,1}=\overline{\left(V^{*}\right)^{0,1}}$.

This decomposition gives a decomposition of the exterior algebra, $\Lambda^{r}\left(V^{*} \otimes \mathbb{C}\right)=\Lambda^{r}\left(V^{*}\right) \otimes \mathbb{C}$. Now, this decomposes into bigraded pieces

$$
\Lambda^{r}\left(V^{*} \otimes \mathbb{C}\right)=\bigoplus_{k+l=r} \Lambda^{k, l}\left(V^{*}\right)
$$

$\Lambda^{k, l}\left(V^{*}\right)$ is the linear span of k, l forms of the form

$$
\mu_{1} \wedge \cdots \wedge \mu_{k} \wedge \bar{\nu}_{1} \wedge \cdots \wedge \bar{\nu}_{l} \quad \mu_{i} \nu_{j} \in\left(V^{*}\right)^{1,0}
$$

Note that $J^{*}: V^{*} \otimes \mathbb{C} \rightarrow V^{*} \otimes \mathbb{C}$ can be extended to a map $J^{*}: \Lambda^{r}\left(V^{*} \otimes \mathbb{C}\right) \rightarrow \Lambda^{r}\left(V^{*} \otimes \mathbb{C}\right)$ by setting

$$
J^{*}\left(l_{1} \wedge \cdots \wedge l_{r}\right)=J^{*} l_{1} \wedge \cdots \wedge J^{*} l_{r}
$$

on decomposable elements $l_{1} \wedge \cdots \wedge l_{r} \in \Lambda^{r}$.
We can define complex conjugation on $\Lambda^{r}\left(V^{*} \otimes \mathbb{C}\right)$ on decomposable elements $\omega=l_{1} \wedge \cdots \wedge l_{r}$ by $\bar{\omega}=\bar{l}_{1} \wedge \cdots \wedge \bar{l}_{r}$.
$\Lambda^{r}\left(V^{*} \otimes \mathbb{C}\right)=\Lambda^{r}(V) \otimes \mathbb{C}$, then $\bar{\omega}=\omega$ if and only if $\omega \in \Lambda^{r}\left(V^{*}\right)$. And if $\omega \in \Lambda^{k, l}\left(V^{*}\right)$ then $\bar{\omega} \in \Lambda^{l, k}\left(V^{*}\right)$

Proposition. On $\Lambda^{k, l}\left(V^{*}\right)$ we have $J^{*}=(\sqrt{-1})^{k-l}$ Id.
Proof. Take $\omega=\mu_{1} \wedge \cdots \wedge \mu_{k} \wedge \bar{\nu}_{1} \wedge \cdots \wedge \bar{\nu}_{l}, \mu_{i}, \nu_{i} \in\left(V^{*}\right)^{1,0}$ then

$$
J^{*} \omega=J^{*} \mu_{1} \wedge \cdots \wedge J^{*} \mu_{k} \wedge J^{*} \bar{\nu}_{1} \wedge \cdots \wedge J^{*} \bar{\nu}_{l}=(-1)^{k}(-\sqrt{-1})^{l} \omega
$$

Notice that for the following decomposition of $\Lambda^{2}(V \otimes \mathbb{C})$ the eigenvalues of J^{*} are given below

$$
\underbrace{\Lambda^{2}(V \otimes \mathbb{C})}_{J^{*}}=\underbrace{\Lambda^{2,0}}_{1} \oplus \underbrace{\Lambda^{1,1}}_{-1} \oplus \underbrace{\Lambda^{0,2}}_{-1}
$$

So if $\omega \in \Lambda^{*}\left(V^{*} \otimes \mathbb{C}\right)$ then if $J \omega=\omega$.
Now, back to serious Kahler stuff.
Let V, B, J be Kahler. $B \mapsto \omega_{B} \in \Lambda^{2}\left(V^{*}\right) \subset \Lambda^{2}\left(V^{*}\right) \otimes \mathbb{C}$.
B is J invariant, so ω_{B} is J-invariant, which happens if and only if $\omega_{B} \in \Lambda^{1,1}\left(V^{*}\right)$ and ω_{B} is real if and only if $\bar{\omega}_{B}=\omega_{B}$.

So there is a - 1 correspondence between J invariant elements of $\Lambda^{2}(V)$ and elements $\omega \in \Lambda^{1,1}\left(V^{*}\right)$ which are real.

Observe: $\left.\left(V^{*}\right)^{1,0} \otimes V^{*}\right)^{0,1} \xrightarrow{\rho} \Lambda^{1,1}\left(V^{*}\right)$ by $\mu \otimes \nu \mapsto \mu \wedge \nu$. Let μ_{1}, \ldots, μ_{n} be a basis of $\left(V^{*}\right)^{1,0}$. Take

$$
\alpha=\sum a_{i j} \mu_{i} \otimes \bar{\mu}_{j} \in\left(V^{*}\right)^{1,0} \otimes\left(V^{*}\right)^{0,1}
$$

Take

$$
\rho(\alpha)=\sum a_{i j} \mu_{i} \wedge \bar{\mu}_{j}
$$

is it true that $\overline{\rho(\alpha)}=\rho(\alpha)$. No, not always. This happens if $a_{i j}=-\overline{a_{i j}}$, equivalently $\frac{1}{\sqrt{-1}}\left[a_{i j}\right]$ is Hermitian. We have

$$
\operatorname{Alt}^{2}(V) \ni B \mapsto \omega=\omega_{B} \in \Lambda^{1,1}\left(V^{*}\right)
$$

Take $\alpha=\rho^{-1}(\omega), H=\frac{1}{\sqrt{-1}} \alpha$. Then H is Hermitian.
Check that $H=\frac{1}{\sqrt{-1}}(B+\sqrt{-1} Q), B$ Kahler iff and only if H is positive definite.

