Lecture 11

U open in $\mathbb{C}^{n}, \rho \in C^{\infty}(U), \rho: U \rightarrow \mathbb{R}$ ten ρ is strictly plurisubharmonic if for all $p \in U$ the matrix

$$
\left[\frac{\partial^{2} \rho}{\partial z_{i} \partial \bar{z}_{j}}(p)\right]
$$

is positive definite.
If U, V open in \mathbb{C}^{n} then $\varphi: U \rightarrow V$ is biholomorphic then for $\rho \in C^{\infty}(V)$ strictly plurisubharmonic $\varphi^{*} \rho$ is also strictly plurisubharmonic. If $q=\varphi(p)$

$$
\frac{\partial^{2}}{\partial z_{i} \bar{z}_{j}} \varphi^{*} \rho(q)=\sum_{k, l} \frac{\partial^{2} \rho}{\partial z_{i} \partial \bar{z}_{l}} \frac{\partial \varphi_{k}}{\partial z_{l}} \frac{\partial \bar{\varphi}_{l}}{\partial \bar{z}_{j}}
$$

the RHS being s.p.s.h implies the right hand side is also.
Definition. U open in \mathbb{C}^{n} is pseudo-convex if it admits a s.p.s.h exhaustion function. We discussed the examples before (in particular if U_{1}, U_{2} pseudo-convex, $U_{1} \cap U_{2}$ is pseudo-convex)

The observation above gives that pseudoconvexity is invariant under biholomorphism.
Theorem (Hormander). U pseudo-convex then the Dolbeault complex on U is exact.

Back to Cech Cohomology

X a complex n-dimensional manifold and $\mathcal{U}=\left\{U_{i}, i \in I\right\}$ and \mathcal{F} a sheaf of abelian groups. We get the Cech complex

$$
C^{0}(\mathcal{U}, \mathcal{F}) \xrightarrow{\delta} C^{1}(\mathcal{U}, \mathcal{F}) \xrightarrow{\delta} \cdots
$$

and $H^{p}(\mathcal{U}, \mathcal{F})$ is the cohomology group of the Cech complex. We proved earlier that $H^{0}(\mathcal{U}, \mathcal{F})=\mathcal{F}(X)$. Also, we showed that if \mathcal{F} is one of the sheaves that we discussed $H^{p}(\mathcal{U}, \mathcal{F})=0, p>0$ i.e. $\mathcal{F}=C^{\infty}, \Omega^{r}, \Omega^{p, q}$.

But what we're really interested in is $\mathcal{F}=\mathcal{O}$.
Definition. $\mathcal{U}=\left\{U_{i}, i \in I\right\}$ is a pseudoconvex cover if for each i, U_{i} is biholomorphic to a pseudoconvex open set of \mathbb{C}^{n}.

Theorem. If \mathcal{U} is a pseudoconvex cover then the Cech cohomology groups $H^{p}(\mathcal{U}, \mathcal{O})$ are identified with the cohomology groups of the Dolbeault complex

$$
\Omega^{0,0}(X) \xrightarrow{\bar{\partial}} \Omega^{0,1}(X) \xrightarrow{\bar{\partial}} \Omega^{0,2}(X) \xrightarrow{\bar{\partial}} \cdots
$$

This is pretty nice, because its a comparison of very different objects. We do a proof by diagram chasing. The rows of this diagram are

$$
0 \xrightarrow{\delta} \Omega^{0, q}(X) \xrightarrow{\delta} C^{0}\left(\mathcal{U}, \Omega^{0, q}\right) \xrightarrow{\delta} C^{1}\left(\mathcal{U}, \Omega^{0, q}\right) \xrightarrow{\delta} \cdots
$$

To figure out the columns we have to create another way looking at the Cech complex.
Let N be the nerve of $\mathcal{U}, J \in N^{p}, c \in C^{p}\left(\mathcal{U}, \Omega^{0, q}\right)$ iff c assigns to J an element $c(J) \in \Omega^{0, q}\left(U_{J}\right)$.
Define $\bar{\partial} c \in C^{p}\left(\mathcal{U}, \Omega^{0, q+1}\right)$ by

$$
\bar{\partial} c(J)=\bar{\partial}(c(J))
$$

now $\bar{\partial}: C^{p}\left(\mathcal{U}, \Omega^{0, q}\right) \rightarrow C^{p}\left(\mathcal{U}, \Omega^{0, q+1}\right)$ and we can show that $\bar{\partial}^{2}=0$.
Its not hard to show that the diagram below commutes.

Consider the map $C^{p}\left(\mathcal{U}, \Omega^{0,0}\right) \xrightarrow{\bar{\sigma}} C^{p}\left(\mathcal{U}, \Omega^{0,1}\right)$, what is the kernel of $\bar{\partial} . c \in C^{p}\left(\mathcal{U}, \Omega^{0,0}\right), J \in N^{p}, c(J) \in$ $C^{\infty}\left(U_{J}\right)$ and $\bar{\partial} c(J)=0$ then $c(J) \in \mathcal{O}\left(U_{J}\right)$. So we can extend the arrow that we are considering as follows

$$
C^{p}(\mathcal{U}, \mathcal{O}) \xrightarrow{i} C^{p}\left(\mathcal{U}, \Omega^{0,0}\right) \xrightarrow{\bar{\partial}} C^{p}\left(\mathcal{U}, \Omega^{0,1}\right) \longrightarrow \cdots
$$

Theorem. The following sequence is exact

$$
C^{p}\left(\mathcal{U}, \Omega^{0,0}\right) \xrightarrow{\bar{\partial}} C^{p}\left(\mathcal{U}, \Omega^{0,1}\right) \xrightarrow{\bar{\partial}} \cdots
$$

Observation: $J \in N^{p}$. The set U_{J} is biholomorphic to a pseudoconvex open set in \mathbb{C}^{n}. Why? U_{J} is non-empty and it is the intersection of pseudoconvex sets, and so it is also pseudoconvex.

Suppose we have $c \in C^{p}\left(\mathcal{U}, \Omega^{0, q}\right)$ and $\bar{\partial} c=0$. For $J \in N^{p}, c(J) \in C^{\infty}\left(U_{J}\right)$ and $\bar{\partial} c(J)=0$. So there is an $f_{J} \in \Omega^{0, q+1}$ such that $\bar{\partial} f_{I}=c(J)$. Now define $c^{\prime} \in C^{p}\left(\mathcal{U}, \Omega^{0, q-1}\right)$ by $c^{\prime}(J)=f_{I}$. Then $\bar{\partial} c^{\prime}=c$.

Now, for the diagram. Set $C^{p, q}=C^{p}\left(\mathcal{U}, \Omega^{0, q}\right)$, and $A^{q}=\Omega^{0, q}(X), B^{p}=C^{p}(\mathcal{U}, \mathcal{O})$. We get the following diagram

All rows except the bottom row are exact, all columns except the the left are exact. The bottom row computes $H^{p}(\mathcal{U}, \mathcal{O})$ and the left hand column computes $H^{q}(X$, Dolbeault). We need to prove that the cohomology of the bottom row is the cohomology of the left.

Hint: Take $[a] \in H^{k}(X$, Dolbeault $), a \in A^{k}=\Omega^{0, k}(X)$. The we just diagram chase down and to the right, eventually we get down to a $[b] \in H^{k}(\mathcal{U}, \mathcal{O})$. We have to prove that this case $[a] \rightsquigarrow[b]$ is in fact a mapping (we do this by showing that the chasing does not change cohomology class) and we have to show that the map created is bijective, which is not too hard.

