Lecture 10

IF $\left(U, z_{1}, \ldots, z_{n}\right)$ is a coordinate patch, then this splitting agrees with our old splitting. Son on a complex manifold we have the bicomplex $\left(\Omega^{*, *}, \partial, \bar{\partial}\right)$. Again, we have lots of interesting subcomplexes.

$$
A^{p}(X)=A^{p}=\operatorname{ker} \bar{\partial}: \Omega^{p, 0} \longrightarrow \Omega^{p, 1}
$$

the complex of holomorphic p-forms on X, i.e. on a coordinate patch $\omega \in A^{p}(U)$

$$
\omega=\sum f_{I} d z_{I} \quad f_{I} \in \mathcal{O}(U)
$$

Now, for the complex $A^{p}(X)$ we can compute its cohomology. There are two approaches to this

1. Hodge Theory
2. Sheaf Theory

We'll talk about sheaves fora bit.
Let X be a topological space. $\operatorname{Top}(X)$ is the category whose objects are open subsets of X and morphisms are the inclusion maps.
Definition. A pre-sheaf of abelian groups is a contravariant functor \mathcal{F} from $\operatorname{Top}(X)$ to the category of abelian groups.

In english: \mathcal{F} attached to every open set $U \subset X$ an abelian group $\mathcal{F}(U)$ and to every pair of open sets $U \supset V$ a restriction map $r_{U, V}: \mathcal{F}(U) \rightarrow \mathcal{F}(V)$.

The functorality of this is that if $U \supset V \supset W$ then $r_{U, W}=r_{V, W} \cdot r_{U, V}$.
Examples

1. The pre-sheaf $C, U \rightarrow C(U)=$ the continuous function on U. Then the restrictions are given by

$$
r_{U, V}:\left.C(U) \rightarrow C(V) \quad C(U) \ni f \mapsto f\right|_{V} \in C(V)
$$

2. X a C^{∞} manifold. The pre-sheaf of C^{∞} functions, $U \rightarrow C^{\infty}(U) . r_{U, V}$ are as in 1 .
3. Ω^{r} is a pre-sheaf, $U \rightarrow \Omega^{r}(U)$. Restriction is the usual restriction.
4. X a complex manifold, then $\Omega^{p, q}, U \rightarrow \Omega^{p, q}(U)$ is a pre-sheave.
5. X a complex manifold, then you have the sheaf $U \rightarrow \mathcal{O}(U)$.

Consider the pre-sheaf of C^{∞}-functions. Let $\left\{U_{i}\right\}$ be a collection of open set $\mathrm{n} X$ and $U=\bigcup U_{i}$. We claim that C^{1} has the following "gluing property":

Given $f_{i} \in C^{\infty}\left(U_{i}\right)$ suppose

$$
r_{U_{i}, U_{i} \cap U_{j}} f_{i}=r_{U_{j}, U_{i} \cap U_{j}} f_{j}
$$

i.e. $f_{i}=f_{j}$ on $U_{i} \cap U_{j}$. Then there is a unique $f \in C^{\infty}(U)$ such that

$$
r_{U, U_{i}} f=f_{i}
$$

Definition. A pre-sheaf \mathcal{F} is a sheaf if it has the gluing property.
(Note that all of all pre-sheaves in the examples are sheaves)

Sheaf Cohomology

Let $U=\left\{U_{i}, i \in I\right\}, I$ an index set, U_{i} an open cover of X. Let $J=\left(j_{0}, \ldots, j_{k}\right) \in I^{k+1}$, then define

$$
U_{J}=U_{j_{0}} \cap \cdots \cap U_{j_{k}}
$$

Take $N^{k} \subseteq I^{k+1}$ and let us say that $J \subset N^{k}$ if and only if $U_{J} \neq \emptyset$ and take

$$
N=\bigsqcup N^{k}
$$

then this is a graded set called the nerve of the cover $U_{i} . N^{k}$ is called the k-skeleton of N.
Let \mathcal{F} be the sheaf of abelian groups in X
Definition. A Cech cochain, c of degree k, with values in \mathcal{F} is a map that assigns to every $J \in N^{k}$ an element $c(J) \in \mathcal{F}\left(U_{J}\right)$.

Notation. $J \in N^{k}, J=\left(j_{0}, \ldots, j_{k}\right)$ and $j_{i} \in I$ for all $0 \leq i \leq k$. Then define

$$
J_{i}=\left(j_{0}, \ldots, \widehat{j_{i}}, \ldots, j_{k}\right)
$$

then $J_{i} \in N^{k-1}$ and let $r_{i}=r_{U_{J_{i}}, U_{J}}$.
We can define an coboundary operator

$$
\delta: C^{k-1}(U, \mathcal{F}) \rightarrow C^{k}(U, \mathcal{F})
$$

For $J \in N^{k}$ and $c \in C^{k-1}$ define

$$
\delta c(J)=\sum_{i}(-1)^{i} r_{i} c\left(J_{i}\right)
$$

(note that this makes sense, because $c\left(J_{i}\right) \in \mathcal{F}\left(U_{J_{i}}\right)$.
Lemma. $\delta^{2}=0$, i.e. δ is in fact a coboundary operator.
Proof. $J \in N^{k+1}$ then

$$
\begin{aligned}
(\delta \delta c)(J) & =\sum_{i}(-1)^{i} r_{i} \delta c\left(J_{i}\right) \\
& =\sum_{i}(-1)^{i} r_{i} r_{j} \sum_{j<i}(-1)^{j} c\left(J_{i, j}\right)+ \\
& \sum_{i}(-1)^{i} r_{i} r_{j} \sum_{j>i}(-1)^{j-1} c\left(J_{i, j}\right)
\end{aligned}
$$

this is symmetric in i and j, so its 0 .
Because δ is a coboundary operator we can consider $H^{k}(\mathcal{U}, \mathcal{F})$, the cohomology groups of this complex.
What is $H^{0}(U, \mathcal{F})$? Consider $c \in C^{0}(U, \mathcal{F})$ then every $i \in I, c(i)=f_{i} \in \mathcal{F}\left(U_{i}\right)$. If $\delta c=0$ then $r_{i} f_{j}=r_{j} f_{i}$ for all i, j. Then the gluing property of \mathcal{F} tells us that there exists an $f \in \mathcal{F}(X)$ with $r_{i} f=f_{i}$, so we have proved that $H^{0}(X, \mathcal{F})=\mathcal{F}(X)$, the global sections of the sheaf.

For today, we'll just compute $H^{k}\left(U, C^{\infty}\right)=0$ for all $k \geq 1$. The proof is a bit sketchy.
Let $\left\{\rho_{r}\right\}_{r \in I}$ be a partition of unity subordinate to $\left\{U_{i}, i \in I\right\}$. Then $\rho_{r} \in C_{0}^{\infty}\left(U_{r}\right)$ and $\sum \rho_{r}=1$ by definition. Given $J \in N^{k-1}$ let $(r, J)=\left(r, j_{0}, \ldots, j_{k-1}\right)$ and define a coboundary operator

$$
Q: C^{k}(U, \mathcal{F}) \rightarrow C^{k-1}(U, \mathcal{F})
$$

Take $c \in C^{k}, J \in N^{k-1}$ then

$$
Q c(J)=\sum \rho_{r} c(r, J) \quad \in C^{\infty}\left(U_{J}\right)
$$

Explanation: First notice that (r, J) may not be in N^{k}. But in this case U_{r} and U_{J} are disjoint, so $\rho_{r} \equiv 0$ on U_{J}, so we just make these terms 0 . What if $(r, J) \in N^{k}$ then $c(r, J) \in C^{\infty}\left(U_{r} \cap U_{J}\right)$ (but we want $Q c(J)$ to be $C^{\infty}\left(U_{J}\right)$.

But

$$
\rho_{r} c(r, J)= \begin{cases}\rho_{r} c(r, J) & \text { on } U_{r} \cap U_{J} \\ 0 & \text { on } U_{J}-\left(U_{r} \cap U_{J}\right)\end{cases}
$$

and $\rho_{r} \in C^{\infty}\left(U_{r}\right)$.
Proposition. $\delta Q+Q \delta=i d$.
Corollary. $H^{k}\left(U, C^{\infty}\right)=0$.
The same argument works for the sheaves $\Omega^{*}, \Omega^{p, q}$, but NOT however for \mathcal{O}.

