Lecture 10

IF (U, z_1, \ldots, z_n) is a coordinate patch, then this splitting agrees with our old splitting. Son on a complex manifold we have the bicomplex $(\Omega^{*,*}, \partial, \overline{\partial})$. Again, we have lots of interesting subcomplexes.

$$A^{p}(X) = A^{p} = \ker \overline{\partial} : \Omega^{p,0} \longrightarrow \Omega^{p,1}$$

the complex of holomorphic p-forms on X, i.e. on a coordinate patch $\omega \in A^p(U)$

$$\omega = \sum f_I dz_I \qquad f_I \in \mathcal{O}(U)$$

Now, for the complex $A^p(X)$ we can compute its cohomology. There are two approaches to this

- 1. Hodge Theory
- 2. Sheaf Theory

We'll talk about sheaves for bit.

Let X be a topological space. Top(X) is the category whose objects are open subsets of X and morphisms are the inclusion maps.

Definition. A **pre-sheaf** of abelian groups is a contravariant functor \mathcal{F} from Top(X) to the category of abelian groups.

In english: \mathcal{F} attached to every open set $U \subset X$ an abelian group $\mathcal{F}(U)$ and to every pair of open sets $U \supset V$ a restriction map $r_{U,V} : \mathcal{F}(U) \to \mathcal{F}(V)$. The functorality of this is that if $U \supset V \supset W$ then $r_{U,W} = r_{V,W} \cdot r_{U,V}$.

The functorality of this is that if $U \supset V \supset W$ then $r_{U,W} = r_{V,W} \cdot r_{U,V}$. Examples

1. The pre-sheaf $C, U \to C(U)$ = the continuous function on U. Then the restrictions are given by

$$r_{U,V}: C(U) \to C(V)$$
 $C(U) \ni f \mapsto f \mid_V \in C(V)$

2. X a C^{∞} manifold. The pre-sheaf of C^{∞} functions, $U \to C^{\infty}(U)$. $r_{U,V}$ are as in 1.

3. Ω^r is a pre-sheaf, $U \to \Omega^r(U)$. Restriction is the usual restriction.

4. X a complex manifold, then $\Omega^{p,q}$, $U \to \Omega^{p,q}(U)$ is a pre-sheave.

5. X a complex manifold, then you have the sheaf $U \to \mathcal{O}(U)$.

Consider the pre-sheaf of C^{∞} -functions. Let $\{U_i\}$ be a collection of open set n X and $U = \bigcup U_i$. We claim that C^1 has the following "gluing property":

Given $f_i \in C^{\infty}(U_i)$ suppose

$$r_{U_i,U_i\cap U_j}f_i = r_{U_j,U_i\cap U_j}f_j$$

i.e. $f_i = f_j$ on $U_i \cap U_j$. Then there is a unique $f \in C^{\infty}(U)$ such that

$$r_{U,U_i}f = f_i$$

Definition. A pre-sheaf \mathcal{F} is a **sheaf** if it has the gluing property.

(Note that all of all pre-sheaves in the examples are sheaves)

Sheaf Cohomology

Let $U = \{U_i, i \in I\}$, I an index set, U_i an open cover of X. Let $J = (j_0, \ldots, j_k) \in I^{k+1}$, then define

$$U_J = U_{j_0} \cap \dots \cap U_{j_l}$$

Take $N^k \subseteq I^{k+1}$ and let us say that $J \subset N^k$ if and only if $U_J \neq \emptyset$ and take

$$N = | N^k$$

then this is a graded set called the **nerve** of the cover U_i . N^k is called the **k-skeleton** of N.

Let \mathcal{F} be the sheaf of abelian groups in X

Definition. A Cech cochain, c of degree k, with values in \mathcal{F} is a map that assigns to every $J \in N^k$ an element $c(J) \in \mathcal{F}(U_J)$.

Notation. $J \in N^k$, $J = (j_0, \ldots, j_k)$ and $j_i \in I$ for all $0 \le i \le k$. Then define

$$J_i = (j_0, \ldots, \hat{j_i}, \ldots, j_k)$$

then $J_i \in N^{k-1}$ and let $r_i = r_{U_{J_i}, U_J}$.

We can define an coboundary operator

$$\delta: C^{k-1}(U,\mathcal{F}) \to C^k(U,\mathcal{F})$$

For $J \in N^k$ and $c \in C^{k-1}$ define

$$\delta c(J) = \sum_{i} (-1)^{i} r_{i} c(J_{i})$$

(note that this makes sense, because $c(J_i) \in \mathcal{F}(U_{J_i})$.

Lemma. $\delta^2 = 0$, *i.e.* δ is in fact a coboundary operator.

Proof. $J \in N^{k+1}$ then

$$(\delta\delta c)(J) = \sum_{i} (-1)^{i} r_{i} \delta c(J_{i})$$

= $\sum_{i} (-1)^{i} r_{i} r_{j} \sum_{j < i} (-1)^{j} c(J_{i,j}) +$
 $\sum_{i} (-1)^{i} r_{i} r_{j} \sum_{j > i} (-1)^{j-1} c(J_{i,j})$

this is symmetric in i and j, so its 0.

Because δ is a coboundary operator we can consider $H^k(\mathcal{U}, \mathcal{F})$, the cohomology groups of this complex. What is $H^0(\mathcal{U}, \mathcal{F})$? Consider $c \in C^0(\mathcal{U}, \mathcal{F})$ then every $i \in I$, $c(i) = f_i \in \mathcal{F}(U_i)$. If $\delta c = 0$ then $r_i f_j = r_j f_i$ for all i, j. Then the gluing property of \mathcal{F} tells us that there exists an $f \in \mathcal{F}(X)$ with $r_i f = f_i$, so we have proved that $H^0(X, \mathcal{F}) = \mathcal{F}(X)$, the global sections of the sheaf.

For today, we'll just compute $H^k(U, C^{\infty}) = 0$ for all $k \ge 1$. The proof is a bit sketchy.

Let $\{\rho_r\}_{r\in I}$ be a partition of unity subordinate to $\{U_i, i \in I\}$. Then $\rho_r \in C_0^{\infty}(U_r)$ and $\sum \rho_r = 1$ by definition. Given $J \in N^{k-1}$ let $(r, J) = (r, j_0, \dots, j_{k-1})$ and define a coboundary operator

$$Q: C^k(U, \mathcal{F}) \to C^{k-1}(U, \mathcal{F})$$

Take $c \in C^k$, $J \in N^{k-1}$ then

$$Qc(J) = \sum \rho_r c(r, J) \qquad \in C^{\infty}(U_J)$$

Explanation: First notice that (r, J) may not be in N^k . But in this case U_r and U_J are disjoint, so $\rho_r \equiv 0$ on U_J , so we just make these terms 0. What if $(r, J) \in N^k$ then $c(r, J) \in C^{\infty}(U_r \cap U_J)$ (but we want Qc(J) to be $C^{\infty}(U_J)$.

But

$$\rho_r c(r, J) = \begin{cases} \rho_r c(r, J) & \text{on } U_r \cap U_J \\ 0 & \text{on } U_J - (U_r \cap U_J) \end{cases}$$

and $\rho_r \in C^{\infty}(U_r)$.

Proposition. $\delta Q + Q\delta = id.$

Corollary. $H^k(U, C^{\infty}) = 0.$

The same argument works for the sheaves Ω^* , $\Omega^{p,q}$, but NOT however for \mathcal{O} .