Lecture 9

We have a manifold $\mathbb{C} P^{n}$. Take

$$
P\left(z_{0}, \ldots, P z_{n}\right)=\sum_{|\alpha|=m} c_{\alpha} z^{\alpha}
$$

a homogenous polynomial. Then

1. $P(\lambda z)=\lambda^{m} P(z)$, so if $P(z)=0$ then $P(\lambda z)=0$
2. Euler's identity holds

$$
\sum_{i=0}^{n} z_{i} \frac{\partial P}{\partial z_{i}}=m P
$$

Lemma. The following are equivalent

1. For all $z \in \mathbb{C}^{n+1}-\{0\}, d P_{z} \neq 0$
2. For all $z \in \mathbb{C}^{n+1}-\{0\}, P(z)=0, d P_{z} \neq 0$.
we call P non-singular if one of these holds.
If $X=\left\{\left[z_{0}, \ldots, z_{n}\right], P(z)=0\right\}$. Note that this is a well-defined property of homogeneous polynomials.
Theorem. If P is non-singular, X s an $n-1$ dimensional submanifold of $\mathbb{C} P^{n}$.
Proof. Let U_{0}, \ldots, U_{n} be the standard atlas for $\mathbb{C} P^{n}$. It is enough to check that $X \cap U_{i}$ is a submanifold of U_{i}. WE'll check this for $i=0$.

Consider the map $\gamma \mathbb{C}^{n} \xrightarrow{\cong} U_{0}$ given by

$$
\gamma\left(z_{1}, \ldots, z_{n}\right)=\left[1, z_{1}, \ldots, z_{n}\right]
$$

It is enough to show that $X_{0}=\gamma^{-1}(X)$ is a complex $n-1$ dimensional submanifold of \mathbb{C}^{n}. Let $p\left(z_{1}, \ldots, z_{n}\right)=$ $P\left(1, z_{1}, \ldots, z_{n}\right)$. X_{0} is the set of all points such that $p=0$. It is enough to show that $p(z)=0$ implies $d p_{z} \neq 0$ (showed last time that this would then define a submanifold)

Suppose $d p(z)=p(z)=0$. Then

$$
p\left(1, z_{1}, \ldots, z_{n}\right)=0=\frac{\partial P}{\partial z_{i}}\left(1, z_{1}, \ldots, z_{n}\right)=0 \quad i=1, \ldots, n
$$

By the Euler Identity

$$
0=P\left(1, z_{1}, \ldots, z_{n}\right)=\sum_{i=0}^{n} z_{i} \frac{\partial P}{\partial z_{i}}\left(1, z_{1}, \ldots, z_{n}\right)+\sum \frac{\partial P}{\partial z_{i}}\left(1, z_{1}, \ldots, z_{n}\right)
$$

So $\frac{\partial P}{\partial z_{i}}\left(1, z_{1}, \ldots, z_{n}\right)=0$, which is a contradiction because we assumed $p \neq 0$.

Theorem (Uniqueness of Analytic Continuation). X a connected complex manifold, $V \subseteq X$ is an open set, $f, g \in \mathcal{O}(X)$. If $f=g$ on V then $f=g$ on all of X.

Sketch. Local version of UAC plus the following connectedness lemma
Lemma. For $p, q \in X$ there exists open sets $U_{i}, i=1, \ldots, n$ such that

1. U_{i} is biholomorphic to a connected open subset of \mathbb{C}^{n}
2. $p \in U_{1}$
3. $q \in U_{n}$
4. $U_{i} \cap U_{i+1} \neq \emptyset$.

Theorem. If X is a connected complex manifold and $f \in \mathcal{O}(X)$ then if for some $p \in X,|f|: X \rightarrow \mathbb{R}$ takes a local maximum then f is constant.

Corollary. If X is compact and connected $\mathcal{O}(X)=\mathbb{C}$.
This implies that the Whitney embedding theorem does not hold for holomorphic manifolds.
Let X be a complex n-dimensional manifold, X a real $2 n$ dimensional manifold. Then if $p \in X$ then $T_{p} X$ is a real 2 n -dimensional vector space and $T_{p} X$ is a complex n-dimensional vector space.

Think for the moment of $T_{p} X$ as being a $2 n$-dimensional \mathbb{R}-linear vector space. Define

$$
J_{p}: T_{p} X \rightarrow T_{p} X \quad J_{p} v=\sqrt{-1} v
$$

J_{p} is \mathbb{R}-linear map with the property that $J_{p}^{2}=-I$. We want to find the eigenvectors. First take $T_{p} \otimes \mathbb{C}$ and extend J_{p} to this by

$$
J_{p}(v \otimes c)=J_{p} v \otimes c
$$

Now, J_{p} is \mathbb{C}-linear, $J_{p}: T_{p} \otimes \mathbb{C} \rightarrow T_{p} \otimes \mathbb{C}$. Also, we can introduce a complex conjugation operator

$$
: T_{p} \otimes \mathbb{C} \rightarrow T_{p} \otimes \mathbb{C} \quad v \otimes c \mapsto v \otimes \bar{c}
$$

We can split the tangent space by

$$
T_{p} \otimes \mathbb{C}=T_{p}^{1,0} \oplus T_{p}^{0,1}
$$

where $v \in T_{p}^{1,0}$ if $J_{p} v=+\sqrt{-1} v$ and $v \in T_{p}^{0,1}$ if $J_{p} v=-\sqrt{-1} v$. i.e. we break $T_{p} \otimes \mathbb{C}$ into eigenspaces.
If $v \in T_{p}^{1,0}$ iff $\bar{v} \in T_{p}^{0,1}$ and so the dimension of the two parts of the tangent spaces are equal.
We can also take $T_{p}^{*} \otimes \mathbb{C}=\left(T_{p}^{*}\right)^{1,0} \oplus\left(T_{p}^{*}\right)^{0,1}$ and $l \in\left(T_{p}^{*}\right)^{1,0}$ if and only if $J_{p}^{*} l=\sqrt{-1} l, l \in\left(T_{p}^{*}\right)^{0,1}$ if $J_{p}^{*} l=-\sqrt{-1} l$.

Check that $l \in\left(T_{p}^{*}\right)^{1,0}$ if and only if $l: T_{p} \rightarrow \mathbb{C}$ is actually \mathbb{C}-linear. To do this $J^{*} l=\sqrt{-1} l$ implies $J_{p}^{*} l(v)=l\left(J_{p} v\right)=\sqrt{-1} l(v)$ which implies that l is \mathbb{C}-linear.

Corollary. U is open in X and $p \in U$. Then if $f \in \mathcal{O}\left(U\right.$ then $d f_{p} \in\left(T_{p}^{*}\right)^{1,0}$.
Corollary. $\left(U, z_{1}, \ldots, z_{n}\right)$ a coordinate patch then $\left(d z_{1}\right)_{p}, \ldots,\left(d z_{n}\right)_{p}$ is a basis of $\left(T_{p}^{*}\right)^{1,0}$ and $\left(d \bar{z}_{1}\right)_{p}, \ldots,\left(d \bar{z}_{n}\right)_{p}$ is a basis of $\left(T_{p}^{*}\right)^{0,1}$.

From the splitting above we get a splitting of the exterior product

$$
\Lambda^{k}\left(T_{p}^{*} \otimes \mathbb{C}\right)=\bigoplus_{l+m=k} \Lambda^{l, m}\left(T_{p}^{*} \otimes \mathbb{C}\right)
$$

for ν_{1}, \ldots, ν_{n} a basis of $T_{p}^{*} \otimes \mathbb{C}$ then

$$
\omega \in \Lambda^{l, m}\left(T_{p}^{*} \otimes \mathbb{C}\right) \Leftrightarrow \omega=\sum c_{I, J} \nu_{I} \wedge \bar{\nu}_{J}
$$

We also get a splitting in the tangent bundle

$$
\Lambda^{k}\left(T^{*} \otimes \mathbb{C}\right)=\bigoplus_{l+m=k} \Lambda^{k, l}\left(T^{*} \otimes \mathbb{C}\right)
$$

since $\Omega^{k}(X)$ is sections of $\Lambda^{k}\left(T^{*} \otimes \mathbb{C}\right)$. Then

$$
\Omega^{k}(X)=\bigoplus_{l+m=k} \Lambda^{l, m}(X)
$$

Locally when $\left(U, z_{1}, \ldots, z_{n}\right)$ is a coordinate patch, $\omega \in \Omega^{l, m}(U)$ iff

$$
\omega=\sum a_{I, J} d z_{I} \wedge d \bar{z}_{J}
$$

so we've extended the Dolbeault complex to arbitrary manifolds.

