Lecture 9

We have a manifold $\mathbb{C}P^n$. Take

$$P(z_0,\ldots,Pz_n) = \sum_{|\alpha|=m} c_{\alpha} z^{\alpha}$$

a homogenous polynomial. Then

- 1. $P(\lambda z) = \lambda^m P(z)$, so if P(z) = 0 then $P(\lambda z) = 0$
- 2. Euler's identity holds

$$\sum_{i=0}^n z_i \frac{\partial P}{\partial z_i} = mP$$

Lemma. The following are equivalent

- 1. For all $z \in \mathbb{C}^{n+1} \{0\}, dP_z \neq 0$
- 2. For all $z \in \mathbb{C}^{n+1} \{0\}$, P(z) = 0, $dP_z \neq 0$.

we call P non-singular if one of these holds.

If $X = \{[z_0, \ldots, z_n], P(z) = 0\}$. Note that this is a well-defined property of homogeneous polynomials.

Theorem. If P is non-singular, X s an n-1 dimensional submanifold of $\mathbb{C}P^n$.

Proof. Let U_0, \ldots, U_n be the standard atlas for $\mathbb{C}P^n$. It is enough to check that $X \cap U_i$ is a submanifold of U_i . WE'll check this for i = 0.

Consider the map $\gamma \mathbb{C}^n \xrightarrow{\cong} U_0$ given by

$$\gamma(z_1,\ldots,z_n) = [1,z_1,\ldots,z_n]$$

It is enough to show that $X_0 = \gamma^{-1}(X)$ is a complex n-1 dimensional submanifold of \mathbb{C}^n . Let $p(z_1, \ldots, z_n) = P(1, z_1, \ldots, z_n)$. X_0 is the set of all points such that p = 0. It is enough to show that p(z) = 0 implies $dp_z \neq 0$ (showed last time that this would then define a submanifold) Suppose dp(z) = p(z) = 0. Then

$$p(1, z_1, \dots, z_n) = 0 = \frac{\partial P}{\partial z_i}(1, z_1, \dots, z_n) = 0$$
 $i = 1, \dots, n$

By the Euler Identity

$$0 = P(1, z_1, \dots, z_n) = \sum_{i=0}^n z_i \frac{\partial P}{\partial z_i}(1, z_1, \dots, z_n) + \sum \frac{\partial P}{\partial z_i}(1, z_1, \dots, z_n)$$

So $\frac{\partial P}{\partial z_i}(1, z_1, \dots, z_n) = 0$, which is a contradiction because we assumed $p \neq 0$.

Theorem (Uniqueness of Analytic Continuation). X a connected complex manifold, $V \subseteq X$ is an open set, $f, q \in \mathcal{O}(X)$. If f = q on V then f = q on all of X.

Sketch. Local version of UAC plus the following connectedness lemma

Lemma. For $p, q \in X$ there exists open sets U_i , i = 1, ..., n such that

- 1. U_i is biholomorphic to a connected open subset of \mathbb{C}^n
- 2. $p \in U_1$
- 3. $q \in U_n$
- 4. $U_i \cap U_{i+1} \neq \emptyset$.

Theorem. If X is a connected complex manifold and $f \in \mathcal{O}(X)$ then if for some $p \in X$, $|f|: X \to \mathbb{R}$ takes a local maximum then f is constant.

Corollary. If X is compact and connected $\mathcal{O}(X) = \mathbb{C}$.

This implies that the Whitney embedding theorem does not hold for holomorphic manifolds.

Let X be a complex n-dimensional manifold, X a real 2n dimensional manifold. Then if $p \in X$ then T_pX is a real 2n-dimensional vector space and T_pX is a complex *n*-dimensional vector space. Think for the moment of T_pX as being a 2*n*-dimensional \mathbb{R} -linear vector space. Define

$$J_p: T_pX \to T_pX \qquad J_pv = \sqrt{-1}v$$

 J_p is \mathbb{R} -linear map with the property that $J_p^2 = -I$. We want to find the eigenvectors. First take $T_p \otimes \mathbb{C}$ and extend J_p to this by

$$J_p(v \otimes c) = J_p v \otimes c$$

Now, J_p is \mathbb{C} -linear, $J_p: T_p \otimes \mathbb{C} \to T_p \otimes \mathbb{C}$. Also, we can introduce a complex conjugation operator

$$: T_p \otimes \mathbb{C} \to T_p \otimes \mathbb{C} \qquad v \otimes c \mapsto v \otimes \bar{c}$$

We can split the tangent space by

$$T_p \otimes \mathbb{C} = T_p^{1,0} \oplus T_p^{0,1}$$

where $v \in T_p^{1,0}$ if $J_p v = +\sqrt{-1}v$ and $v \in T_p^{0,1}$ if $J_p v = -\sqrt{-1}v$. i.e. we break $T_p \otimes \mathbb{C}$ into eigenspaces. If $v \in T_p^{1,0}$ iff $\bar{v} \in T_p^{0,1}$ and so the dimension of the two parts of the tangent spaces are equal. We can also take $T_p^* \otimes \mathbb{C} = (T_p^*)^{1,0} \oplus (T_p^*)^{0,1}$ and $l \in (T_p^*)^{1,0}$ if and only if $J_p^* l = \sqrt{-1}l$, $l \in (T_p^*)^{0,1}$ if $J_p^*l = -\sqrt{-1}l.$

Check that $l \in (T_p^*)^{1,0}$ if and only if $l: T_p \to \mathbb{C}$ is actually \mathbb{C} -linear. To do this $J^*l = \sqrt{-1}l$ implies $J_p^*l(v) = l(J_p v) = \sqrt{-1}l(v)$ which implies that l is \mathbb{C} -linear.

Corollary. U is open in X and $p \in U$. Then if $f \in \mathcal{O}(U$ then $df_p \in (T_p^*)^{1,0}$.

Corollary. (U, z_1, \ldots, z_n) a coordinate patch then $(dz_1)_p, \ldots, (dz_n)_p$ is a basis of $(T_p^*)^{1,0}$ and $(d\overline{z}_1)_p, \ldots, (d\overline{z}_n)_p$ is a basis of $(T_n^*)^{0,1}$.

From the splitting above we get a splitting of the exterior product

$$\Lambda^k(T_p^* \otimes \mathbb{C}) = \bigoplus_{l+m=k} \Lambda^{l,m}(T_p^* \otimes \mathbb{C})$$

for ν_1, \ldots, ν_n a basis of $T_p^* \otimes \mathbb{C}$ then

$$\omega \in \Lambda^{l,m}(T_p^* \otimes \mathbb{C}) \Leftrightarrow \omega = \sum c_{I,J} \nu_I \wedge \bar{\nu}_J$$

We also get a splitting in the tangent bundle

$$\Lambda^k(T^*\otimes\mathbb{C})=\bigoplus_{l+m=k}\Lambda^{k,l}(T^*\otimes\mathbb{C})$$

since $\Omega^k(X)$ is sections of $\Lambda^k(T^* \otimes \mathbb{C})$. Then

$$\Omega^k(X) = \bigoplus_{l+m=k} \Lambda^{l,m}(X)$$

Locally when (U, z_1, \ldots, z_n) is a coordinate patch, $\omega \in \Omega^{l,m}(U)$ iff

$$\omega = \sum a_{I,J} dz_I \wedge d\bar{z}_J$$

so we've extended the Dolbeault complex to arbitrary manifolds.