Lecture 8

We'll just list a bunch of definitions. X a topological Hausdorff space, second countable.

Definition. A chart is a trip (φ, U, V) , U open in X, V open in \mathbb{C} and $\varphi: U \to V$ a homeomorphism.

If you consider two charts (φ_i, U_i, V_i) , i = 1, 2 we get an overlap diagram. Charts are compatible if and only if the transition maps in the overlap diagram (see-sabove) are biholomorphic.

Definition. A **atlas** is a collection \mathcal{A} of charts such that

- 1. The domains are a cover of X
- 2. All members of \mathcal{A} are compatible.

Definition. An atlas \mathcal{A} is a **maximal atlas** then (X, \mathcal{A}) is a complex *n*-dimensional manifold.

Remark: If every open subset of X is a complex n-dimensional manifold we say \mathcal{A}_U is a member of \mathcal{A} with domain contained in U.

If X is a complex n-dimensional manifold it is automatically a real C^{∞} 2n-dimensional manifold.

Definition. X, Y are complex manifolds, $f: X \to Y$ is holomorphic if locally its holomorphic.

 $f \in \mathcal{O}(X), f: X \to \mathbb{C}$. Note if $f: X \to Y, g: Y \to Z$ holomorphic, then $f \circ g: X \to Z$ is as well. Take X to be an n-dimensional complex manifolds, if we think of X as a C^{∞} 2n-dimensional then T_pX

Take X to be an n-dimensional complex manifolds, if we think of X as a C^{∞} 2n-dimensional then T_pX is well defined. But we showed that T_pX has a complex structure. $f: X \to Y$ holomorphic, $p \in X$, q = f(p)in the real case $df_p: T_p \to T_q$, but we check that this is also \mathbb{C} -linear.

Notion of Charts Revisited A chart (from now on) is a triple (φ, U, V) , U open in X, V open in \mathbb{C}^n , $\varphi: U \to V$ a biholomorphic map.

Definition. A coordinate patch in X is an n-tuple (U, w_1, \ldots, w_n) where U is open in X and $w_i \in \mathcal{O}(U)$ such that the map $\varphi : U \to \mathbb{C}^n$

$$p \mapsto (w_1(p), \ldots, w_n(p))$$

is a biholomorphic map onto an open set V of \mathbb{C}^n .

Charts and coordinate patches are equivalent.

Theorem (Implicit Function Theorem in Manifold Setting). X^n a manifold. $U_0 \subseteq X$ is an open set, $f_1, \ldots, f_k \in \mathcal{O}(U_0)$, $p \in U_0$. Assume df_1, \ldots, df_k are linearly independent at p. Then there exists a coordinate patch (U, w_1, \ldots, w_n) , $p \in U$, $U \subset U_0$ such that $w_i = f_i$ for $i = 1, \ldots, k$.

Proof. We can assume U_0 is the domain of the chart (U_0, V, φ) , V an open set in \mathbb{C}^n , $\varphi : U_0 \to V$ a biholomorphism. Then just apply last lecture version of implicity function theorem to $f_i \circ (\varphi^{-1})$.

Submanifolds

X a complex *n*-dimensional manifolds. $Y \subset X$ a subset.

Definition. Y is a k-dimensional submanifold of X if for every $p \in Y$ there exists a coordinate patch (U, z_1, \ldots, z_n) with $p \in U$ such that $Y \cap U$ is defined by the equation $z_{k+1} = \cdots = z_n = 0$.

Remarks: A k dimensional submanifold of X is a k-dimensional complex manifold in its own right.

Call a coordinate patch with the property above an **adapted** coordinated for X. The collection of (n + 1)-tuples (U', z'_1, \ldots, z'_k) , (U, z_1, \ldots, z_n) , $U' = U \cap Y$, $z'_i = z_i \mid_{U'}$ gives an atlas for X. By the implicit function theorem this definition is equivalent to the following weaker definition.

Definition. Y is a k-dimensional submanifold X if for every $p \in Y$ there exists an open set U of p in X and $f_i \in \mathcal{O}(U)$ where i = 1, ..., l, l = n - k such that $df_1, ..., df_l$ are linearly independent at p and $Y \cap U$, $f_1 = \cdots = f_l = 0$, i.e. locally Y is cut-out by l independent equation.

Examples

Affine non-singular algebraic varieties in \mathbb{C}^n . These are X-dimensional submanifolds, Y of \mathbb{C}^n such that for every $p \in Y$ the f_i 's figuring into the equation above (the ones that cut-out the manifold) are polynomials.

Projective counterparts We start by constructing the projective space $\mathbb{C}P^n$. Start with $\mathbb{C}^{n+1} - \{0\}$. Given 2 (n+1)-tuples we say

$$(z_0, z_1, \ldots, z_n) \sim (z'_0, z'_1, \ldots, z'_n)$$

in $\mathbb{C}^n - \{0\}$ if there exists $\lambda \in \mathbb{C} - \{0\}$ with $z'_i = \lambda z_i$, $i = 0, \dots, n$. $[z_0, z_1, \dots, z_n]$ are equivalence classes. We define $\mathbb{C}P^n$ to be these equivalence classes $\mathbb{C}^{n+1} - \{0\}/\sim$.

We make this into a topological space by $\pi: C^{n+1} - \{0\} \to \mathbb{C}P^n$, which is given by

$$(z_0, z_1, \ldots, z_n) \sim [z_0, z_1, \ldots, z_n]$$

We topologize $\mathbb{C}P^n$ by giving it the weakest topology that makes π continuous, i.e. $U \subseteq \mathbb{C}P^n$ is open if $\pi^{-1}(U)$ is open.

Lemma. With this topology $\mathbb{C}P^n$ is compact.

Proof. Take

$$\mathbb{S}^{2n+1} = \{(z_0, \dots, z_n) ||z_0|^2 + \dots + |z_n|^2 = 1\}$$

and we note

$$\pi(\mathbb{S}^{2n+1}) = \mathbb{C}P^n$$

so its the image of a compact set under a continuous map, so its compact.

Lemma. $\mathbb{C}P^n$ is a complex *n*-manifold.

Proof. Define the standard atlas for $\mathbb{C}P^n$. For $i = 0, \ldots, n$ take

$$U_i = \{[z_0, \dots, z_n] \in \mathbb{C}P^n, z_i \neq 0\}$$

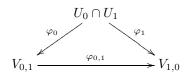
Take $V_i = \mathbb{C}^n$ and define a map $\varphi_i : U_i \to V_i$ by

$$[z_0,\ldots,z_n]\mapsto \left(\frac{z_0}{z_i},\ldots,\frac{\widehat{z_i}}{z_i},\ldots,\frac{z_n}{z_i}\right)$$

 $\varphi_i^{-1}: \mathbb{C}^n \to U_i$ is given by

$$(w_1,\ldots,w_n)\mapsto [w_1,\ldots,1,\ldots,w_n]$$

where w_1 is in the 0th place, and 1 is in the *i*th place. The overlap diagrams for U_0 and U_1 are given by



We can check that $V_{0,1} = V_{1,0} = \{(z_1, \ldots, z_n), z_i \neq 0\}$. Also check that

$$\varphi_{0,1}: V_{0,1} \to V_{1,0} \qquad (z_1, \dots, z_n) \mapsto \left(\frac{1}{z_1}, \frac{z_2}{z_1}, \dots, \frac{z_n}{z_1}\right)$$

/

This standard atlas gives a complex structure for $\mathbb{C}P^n$.