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Lecture 5 

Notes about Exercise 1 

Lemma. Let U and V be as in Theorem 1 above. β ∈ Ω0,q (U), ∂β = 0 then there exists α ∈ Ω0,q−1(U) 

such that ∂α = β on V . 

Proof. Choose a polydisk W so that V ⊂ W , W ⊂ U . Choose ρ ∈ C0
∞(W ) with ρ ≡ 1 on a neighborhood 

of V . By theorem 1 there exists α0 ∈ Ω0,q−1(W ) so that ∂α0 = β on W . If we take 

�
ρα0 on W 

α = 
0 U −W 

q ≥

on 

then we have a solution. 

We claim that the Dolbealt complex is exact on all degrees 2. 

Lemma. Let V0, V1, V2, . . . be a sequence of polydisks so that V r ⊂ Vr+1 and 
� 
V1 = U . (exhaustion on U 

∈ Ω0,q+1(U)by compact polydisk). There exists αi such that ∂αr = β on Vr and such that αr+1 = αr on 
Vr−1. 

∈ Ω0,q−1(U)Proof. By the previous lemma there exists αr with ∂αr = β on Vr . And for αr+1, αr on Vr , 

Ω0,q−1(U)∂αr+1 = ∂αr = β on Vr , so ∂(αr+1 − αr ) = 0 on Vr . Now q ≥ 2 so we can find γ ∈ such that 

r+1 := αold ∂γ = αr+1 − αr on Vr−1. Then set αnew 
r+1 + ∂γ. So ∂αnew = β on Vr+1, α

new = αr on Vr−1.r+1 r+1 



We get a global solution when we set α = αr on Vr−1 for all r.

(EXERCISE Prove exactness at q = 1, i.e. make this argument work for q = 1.)

What does exactness mean for degree 1? Well


β ∈ Ω0,1(U) β = 
� 

fidz̄i fi ∈ C∞(U) 

We need to show that there exists g ∈ Ω0,0(U) = C∞(U) so that ∂g = β, i.e. 

∂g 
= fi i = 1, . . . , n 

∂z̄i 

So the condition that ∂β = 0 is just the integrability conditions. 
So we have to show the following. That there exists a sequence of functions gr ∈ C∞(U). V0 ⊂ V1 ⊂ 

= fi, i = 1, . . . , n on Vr (easy consequence of lemma) ∂z̄i
· · · ⊂ U such that ∂gr 

We can no longer say gr+1 − gr on Vr−1. But we can pick gr such that gr+1 − gr < 1 on Vr−1.2r|
Hint Choose gr ∈ C∞(U) such that ∂gr = fi on Vr . Look at gr+1−gr on 

|
Vr. Note that ∂ (gr+1−gr) = 0 zi ∂¯∂¯ zi 

on Vr, so gr+1 − gr ∈ O(Vr). On Vr−1 we can expand by power series to get gr+1 − gr = 
�

α aαz
α, and 

old new this series is actually uniformly convergent on Vr−1. We try to modify gr+1 by setting gr+1 + PN (z), where 
αPN (z) = 

�
α ≤N aαz| |

(The exercise is due Feb 25th) 

More on Dolbealt Complex 

For polydisks the Dolbealt complex is acyclic (exact). But what about other kinds of open sets? The solution 
was obtained by Kohn in 1963. 

Let U be open in C, ϕ : U → R be such that ϕ ∈ C∞(U). 

Definition. ϕ is strictly pluri-subharmonic if for all p ∈ U the hermitian form 

∂2ϕ 
a ∈ C

n 
� 

(p)aiaj7→
∂zi∂z̄ji,j 

is positive definite. 

(This definition will be important later for Kaehler manifolds) 

Definition. A C∞ function ϕ : U R is an exhaustion function if it is bounded from below and if for all 
c ∈ C 

→

Kc = {p ∈ U ϕ(p) ≤ c}|
is compact. 

Definition. U is pseudoconvex if it possesses a strictly pluri-subharmonic exhaustion function. 

Examples 

∂ϕ 1. U = C. If we take ϕ = |z|2 = zz̄, z = 1. ∂z∂¯

2. U = D ⊂ C

1 ∂ϕ 1 + z 2


ϕ = = 
| |

> 0 
z ∂z∂z̄ (1 − z 2)31 − | |2 | |

3. U ⊂ C, U = = Do, i.e. the punctured disk D − {0}

1 1 ∂ϕo ∂ϕ 
ϕo =

1 − 2 
+ Log = 

z z ∂z∂z̄ ∂z∂z̄| | | |2 

because Log is harmonic. Note the extra term in ϕo is so the function will blow up at its point of 
discontinuity. 
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4. Cn ⊃ U = D1 × · · · ×Dn, where Di = zi
2 < 1. Take| |

1 
ϕ = 

� 

1 − |zi|2 

5. Cn ⊃ U , Do

1 × · · · ×Do


k ×Dk+1 × · · · ×Dn 

k
1 

ϕo = ϕ + 
� 

Log 
zi 2 

i=1 
| |

2 26. U ⊆ Cn , U = Bn , z 2 = z1 + · · · + zn .| | | | | |

1 ∂2ϕ δij 2ziz̄j
ϕ = = + 

z ∂zi∂z̄j (1 + z 2) (1 − z 2)31 − | |2 | | | |

Theorem. If Ui ⊂ Cn , i = 1, 2 is pseudo-convex then U1 ∩ U2 is pseudo-convex 

Proof. Take ϕi to be strictly pluri-subharmonic exhaustion functions for Ui. Then set ϕ = ϕ1 + ϕ2 on 
U1 ∩ Uw . 

Punchline: 

Theorem. The Dolbealt complex is exact on U if and only if U is pseudo-convex. 

This takes 150 pages to prove, so we’ll just take it as fact.

The Dolbealt complex is the left side of the bi-graded de Rham complex.


Ωp,1
There is another interesting complex. For example if we let A0 = ker ∂ : Ωp,0 , ∂∂ + ∂∂ = 0 and 
ω ∈ Ar then ∂ω ∈ Ar+1 and we get a complex 

→

∂ ∂ ∂ 
A0 �� A1 �� A2 �� . . . 


