Lecture 5

Notes about Exercise 1

Lemma. Let U and V be as in Theorem 1 above. $\beta \in \Omega^{0, q}(U), \bar{\partial} \beta=0$ then there exists $\alpha \in \Omega^{0, q-1}(U)$ such that $\bar{\partial} \alpha=\beta$ on V.

Proof. Choose a polydisk W so that $\bar{V} \subset W, \bar{W} \subset U$. Choose $\rho \in C_{0}^{\infty}(W)$ with $\rho \equiv 1$ on a neighborhood of V. By theorem 1 there exists $\alpha_{0} \in \Omega^{0, q-1}(W)$ so that $\bar{\partial} \alpha_{0}=\beta$ on W. If we take

$$
\alpha= \begin{cases}\rho \alpha_{0} & \text { on } W \\ 0 & \text { on } U-W\end{cases}
$$

then we have a solution.
We claim that the Dolbealt complex is exact on all degrees $q \geq 2$.

Lemma. Let $V_{0}, V_{1}, V_{2}, \ldots$ be a sequence of polydisks so that $\bar{V}_{r} \subset V_{r+1}$ and $\bigcup V_{1}=U$. (exhaustion on U by compact polydisk). There exists $\alpha_{i} \in \Omega^{0, q+1}(U)$ such that $\bar{\partial} \alpha_{r}=\beta$ on V_{r} and such that $\alpha_{r+1}=\alpha_{r}$ on V_{r-1}.

Proof. By the previous lemma there exists $\alpha_{r} \in \Omega^{0, q-1}(U)$ with $\bar{\partial} \alpha_{r}=\beta$ on V_{r}. And for α_{r+1}, α_{r} on V_{r}, $\bar{\partial} \alpha_{r+1}=\bar{\partial} \alpha_{r}=\beta$ on V_{r}, so $\bar{\partial}\left(\alpha_{r+1}-\alpha_{r}\right)=0$ on V_{r}. Now $q \geq 2$ so we can find $\gamma \in \Omega^{0, q-1}(U)$ such that $\bar{\partial} \gamma=\alpha_{r+1}-\alpha_{r}$ on V_{r-1}. Then set $\alpha_{r+1}^{\text {new }}:=\alpha_{r+1}^{\text {old }}+\bar{\partial} \gamma$. So $\bar{\partial} \alpha_{r+1}^{\text {new }}=\beta$ on $V_{r+1}, \alpha_{r+1}^{\text {new }}=\alpha_{r}$ on V_{r-1}.

We get a global solution when we set $\alpha=\alpha_{r}$ on V_{r-1} for all r.
(EXERCISE Prove exactness at $q=1$, i.e. make this argument work for $q=1$.)
What does exactness mean for degree 1? Well

$$
\beta \in \Omega^{0,1}(U) \quad \beta=\sum f_{i} d \bar{z}_{i} \quad f_{i} \in C^{\infty}(U)
$$

We need to show that there exists $g \in \Omega^{0,0}(U)=C^{\infty}(U)$ so that $\bar{\partial} g=\beta$, i.e.

$$
\frac{\partial g}{\partial \bar{z}_{i}}=f_{i} \quad i=1, \ldots, n
$$

So the condition that $\bar{\partial} \beta=0$ is just the integrability conditions.
So we have to show the following. That there exists a sequence of functions $g_{r} \in C^{\infty}(U) . V_{0} \subset V_{1} \subset$ $\cdots \subset U$ such that $\frac{\partial g_{r}}{\partial \bar{z}_{i}}=f_{i}, i=1, \ldots, n$ on V_{r} (easy consequence of lemma)

We can no longer say $g_{r+1}-g_{r}$ on V_{r-1}. But we can pick g_{r} such that $\left|g_{r+1}-g_{r}\right|<\frac{1}{2^{r}}$ on V_{r-1}.
$\underline{\text { Hint }}$ Choose $g_{r} \in C^{\infty}(U)$ such that $\frac{\partial g_{r}}{\partial z_{i}}=f_{i}$ on V_{r}. Look at $g_{r+1}-g_{r}$ on V_{r}. Note that $\frac{\partial}{\partial \bar{z}_{i}}\left(g_{r+1}-g_{r}\right)=0$ on V_{r}, so $g_{r+1}-g_{r} \in \mathcal{O}\left(V_{r}\right)$. On V_{r-1} we can expand by power series to get $g_{r+1}-g_{r}=\sum_{\alpha} a_{\alpha} z^{\alpha}$, and this series is actually uniformly convergent on V_{r-1}. We try to modify $g_{r+1}^{\text {old }}$ by setting $g_{r+1}^{\text {new }}+P_{N}(z)$, where $P_{N}(z)=\sum_{|\alpha| \leq N} a_{\alpha} z^{\alpha}$
(The exercise is due Feb 25th)

More on Dolbealt Complex

For polydisks the Dolbealt complex is acyclic (exact). But what about other kinds of open sets? The solution was obtained by Kohn in 1963.

Let U be open in $\mathbb{C}, \varphi: U \rightarrow \mathbb{R}$ be such that $\varphi \in C^{\infty}(U)$.
Definition. φ is strictly pluri-subharmonic if for all $p \in U$ the hermitian form

$$
a \in \mathbb{C}^{n} \mapsto \sum_{i, j} \frac{\partial^{2} \varphi}{\partial z_{i} \partial \bar{z}_{j}}(p) a_{i} \bar{a}_{j}
$$

is positive definite.
(This definition will be important later for Kaehler manifolds)
Definition. A C^{∞} function $\varphi: U \rightarrow \mathbb{R}$ is an exhaustion function if it is bounded from below and if for all $c \in \mathbb{C}$

$$
K_{c}=\{p \in U \mid \varphi(p) \leq c\}
$$

is compact.
Definition. U is pseudoconvex if it possesses a strictly pluri-subharmonic exhaustion function.

Examples

1. $U=\mathbb{C}$. If we take $\varphi=|z|^{2}=z \bar{z}, \frac{\partial \varphi}{\partial z \partial \bar{z}}=1$.
2. $U=D \subset \mathbb{C}$

$$
\varphi=\frac{1}{1-|z|^{2}} \quad \frac{\partial \varphi}{\partial z \partial \bar{z}}=\frac{1+|z|^{2}}{\left(1-|z|^{2}\right)^{3}}>0
$$

3. $U \subset \mathbb{C}, U=D-\{0\}=D^{o}$, i.e. the punctured disk

$$
\varphi^{o}=\frac{1}{1-|z|^{2}}+\log \frac{1}{|z|^{2}} \quad \frac{\partial \varphi^{o}}{\partial z \partial \bar{z}}=\frac{\partial \varphi}{\partial z \partial \bar{z}}
$$

because Log is harmonic. Note the extra term in φ° is so the function will blow up at its point of discontinuity.
4. $\mathbb{C}^{n} \supset U=D_{1} \times \cdots \times D_{n}$, where $D_{i}=\left|z_{i}\right|^{2}<1$. Take

$$
\varphi=\sum \frac{1}{1-\left|z_{i}\right|^{2}}
$$

5. $\mathbb{C}^{n} \supset U, D_{1}^{o} \times \cdots \times D_{k}^{o} \times D_{k+1} \times \cdots \times D_{n}$

$$
\varphi^{o}=\varphi+\sum_{i=1}^{k} \log \frac{1}{\left|z_{i}\right|^{2}}
$$

6. $U \subseteq \mathbb{C}^{n}, U=B^{n},|z|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}$.

$$
\varphi=\frac{1}{1-|z|^{2}} \quad \frac{\partial^{2} \varphi}{\partial z_{i} \partial \bar{z}_{j}}=\frac{\delta_{i j}}{\left(1+|z|^{2}\right)}+\frac{2 z_{i} \bar{z}_{j}}{\left(1-|z|^{2}\right)^{3}}
$$

Theorem. If $U_{i} \subset \mathbb{C}^{n}, i=1,2$ is pseudo-convex then $U_{1} \cap U_{2}$ is pseudo-convex
Proof. Take φ_{i} to be strictly pluri-subharmonic exhaustion functions for U_{i}. Then set $\varphi=\varphi_{1}+\varphi_{2}$ on $U_{1} \cap U_{w}$.

Punchline:
Theorem. The Dolbealt complex is exact on U if and only if U is pseudo-convex.
This takes 150 pages to prove, so we'll just take it as fact.
The Dolbealt complex is the left side of the bi-graded de Rham complex.
There is another interesting complex. For example if we let $A^{0}=\operatorname{ker} \bar{\partial}: \Omega^{p, 0} \rightarrow \Omega^{p, 1}, \partial \bar{\partial}+\bar{\partial} \partial=0$ and $\omega \in A^{r}$ then $\partial \omega \in A^{r+1}$ and we get a complex

$$
A^{0} \xrightarrow{\partial} A^{1} \xrightarrow{\partial} A^{2} \xrightarrow{\partial} \cdots
$$

