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Lecture 4 

Applying Hartog’s Theorem 

Let X ⊂ Cn be an algebraic variety, codC X = 2. And suppose f ∈ O(Cn −X). Then f extends holomor
phically to f ∈ O(Cn). 

Sketch of Proof : Cut X by a complex plane (P = C2) transversally. Then f P ∈ O(P − {p}) so by 
hartog, f P ∈ O(P ). Do this argument for all points, so f has to be holomorphic on

|
f ∈ O(Cn).|

We have to be a little more careful to actually prove it, but this is just an example of how algebraic 
geometers use this. 

Dolbeault Complex and the ICR Equation 

Let U be an open subset of Cn , ω ∈ Ω1(U), then we discussed how Ω1(U) = Ω1,0 ⊕ Ω0,1 . 
There is a similar story for higher degree forms. 
Take r > 1, p + q = r. Then ω ∈ Ωp,q (U) if ω is in the following form 

ω = 
� 

fI,J dzI ∧ dz̄J fI,J ∈ C∞(U) 

and dzI = , dz̄J = d¯ zjq 
are standard multi-indices. Thendzi1 ∧ · · · ∧ dzip 

zj1 ∧ · · · ∧ d¯
� 

Ωp,q(U)Ωr = 
p+q=r 

Now suppose we have ω ∈ Ωp,q (U), ω = 
� 
fI,J dzI ∧ dz̄J then the de Rham differential is written as follows 

dw = 
� 

dfIJ ∧ dzI ∧ dzJ = 
� ∂fI,J 

dzi ∧ dzI ∧ dzJ + 
� ∂f 

dz̄j ∧ dzI ∧ dz̄J
∂zi ∂z̄j 

¯The first term we define to be ∂ω and the second to be ∂ω,i.e. 

∂ω = 
� ∂fI,J 

dzi ∧ dzI ∧ dzJ
∂zi 

∂ω = 
� ∂fI,J 

dz̄j ∧ dzI ∧ dz̄J
∂z̄j 

Now we may write dω = ∂ω + ∂ω, and note that ∂ω ∈ Ωp+1,q(U) and ∂ω ∈ Ωp,q+1(U). 
Also 

d2 = 0 = ∂2ω + ∂∂ω + ∂∂ω + ∂ 
2 
ω 

and the terms in the above expression are of bidegree 

(p + 2, q) + (p + 1, q + 1) + (p + 1, q + 1+(p, q + 2) 

so ∂ = ∂2 = 0 and ∂∂ + ∂∂ = 0, so ∂, ∂ are anti-commutative. 
We now have that the de Rham complex (Ω∗(U), d) is a bicomplex, i.e. d splits into two different 

coboundary operators that anticommute. 
The rows of the bicomplex are given by 

∂ ∂ ∂ 
Ω0,q �� Ω1,q �� Ω2,q �� . . . 

and the columns are given by 

∂ ∂ ∂ 
Ωp,0 �� Ωp,1 �� Ωp,2 �� . . . 

For the moment, we focus on the columns, more specifically the extreme left column. 



� � . . . 

Definition. The Dolbeault Complex is the following complex 

∂ �� Ω0,2(U) 
∂

C∞(U) = Ω0 = Ω0,0(U) 
∂ �� Ω0,1(U) 

A basic problem in several complex variables is to answer the question: For what open sets U in Cn is 
this complex exact? 

Today we will show that the Dolbeault complex is locally exact (actually, we will prove something a little 
stronger) 

Theorem (1). Let U and V be polydisks with V ⊂ U . Then if ω ∈ Ω0,q (U) and ∂ω = 0 then there exists 
µ ∈ Ω0,q−1(V ) with ∂µ = ω on V . 

This just says that if we shrink the domain a little, the exactness holds. 
To prove this theorem we will use a trick similar to showing that the real de Rham complex is locally 

exact. 
First, we define a new set 

Definition. Ω0,q(U)k , 0 ≤ k ≤ n is given by the following rule: ω ∈ Ω0,q (U)k if and only if 

ω = 
� 

fI dz̄I dz̄I = dz̄i1 ∧ · · · ∧ dz̄iq 
,
 1 ≤ i1 ≤ · · · ≤ iq ≤ k


This is just a restriction on the z̄j ’s that may be present. For example Ω0,q(U)0 = {0} and Ω0,q(U)n = 
Ω0,q (U). 

An important property of this space follows. If ω ∈ Ω0,q(U)k then 

∂fI
∂ω = 

� 
dz̄l ∧ dz̄I + Ω0,q+1(U)k

∂z̄l
l>k 

so if ∂ω = 0 then ∂fI /∂z̄l = 0, for l > k i.e. fI is holomorphic. 

Let V, U be polydisks, V ⊂ U . Choose a polydisk W so that V ⊂W and W ⊂ U . 

Theorem (2). If ω ∈ Ω0,q(U)k and ∂ω = 0 then there exists β ∈ Ω0,q−1(W )k−1 such that ω − ∂β ∈
Ω0,q (W )k−1. 

We claim that Theorem 2 implies Theorem 1 (left as exercise) 
Before we prove theorem 2, we need a lemma 

Lemma. (ICR in 1D) If g ∈ C∞(U) with ∂g = 0, l > k then there exists f ∈ C∞(W ) such that ∂f = 0 zl ∂ ̄∂ ̄ zl 

for l > k and ∂f = g.∂ ̄zk 

Proof. U = n where Ui are disks and W = n where Wi are disks. Let ρ ∈ C0
∞(Uk)U1 × · · · ×U W1 × · · · ×W

so that ρ ≡ 1 on a neighborhood of W k . Replacing g by ρ(zk)g we can assume that g is compactly supported 
in zk. 

Choose f to be 
1 
� 

g(z1, . . . , zk−1, η, zk+1, . . . , zn)dη ∧ dη̄
f = 

2πi C η − zk 

We showed before that ∂f = g. By a change of variable we see that∂ ̄zk 

1 
� 

g(z1, . . . , zk−1zk − η, zk+1, . . . , zn)
dη ∧ dη̄f = −

2πi C η 

so f ∈ C∞(W ) and clearly ∂f = 0, l > k. QED.∂ ̄zl 

We may now prove Theorem 2 



Proof of Theorem 2. ω ∈ Ω0,q(U)k , and ∂ω = 0. Write 

ω = µ + dz̄k ∧ ν µ ∈ Ω0,q (U)k−1, ν ∈ Ω0,q−1(U)k−1 

(just decompose ω) and say 

ν = 
� 

gI dz̄I , gI ∈ C∞(U), I = (i1, . . . , iq−1), is ≤ k − 1 

∂ω = 0 tells use that ∂gI = 0, l > k. By the lemma above, there exists fI ∈ C0
∞(W ) so that∂ ̄zl 

∂fI ∂fI 
= gI and = 0, l > k 

z̄k ∂z̄l 

Take β = 
� 
fI dzI , then 

∂fI
∂β = 

� 
dz̄k ∧ dzi + Ω0,q (W )k−1 = dzk ∧ ν 

∂z̄k 

so ω − ∂β ∈ Ω0,q(W )k−1. 

Theorem (3). Let U be a polydisk then the Dolbeault complex 

Ω0,0(U) 
∂ �� Ω0,1(U) 

∂ �� Ω0,2(U) 
∂ �� . . . 

is exact. That is, you don’t have to pass to sub-polydisks. 

The above theorem is EXERCISE 1 


