Lecture 3

Generalizations of the Cauchy Integral Formula

There are many, many ways to generalize this, but we will start with the most obvious
Theorem. Let $D \subseteq \mathbb{C}^{n}$ be the polydisk $D=D_{1} \times \cdots \times D_{n}$ where $D_{i}:\left|z_{i}\right|<R_{i}$ and let $f \in \mathcal{O}(D) \cap C^{\infty}(\bar{D})$ then for any point $\bar{a}=\left(a_{1}, \ldots, a_{n}\right)$

$$
f(a)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\partial D_{1} \times \cdots \times \partial D_{n}} \frac{f\left(z_{1}, \ldots, z_{n}\right)}{\left(z_{1}-a_{1}\right) \ldots\left(z_{n}-a_{n}\right)} d z_{1} \wedge \cdots \wedge d z_{n}
$$

Proof. We will prove by induction, but only for the case $n=2$, the rest follow easily. We do the Cauchy Integral formula in each variable separately

$$
f\left(z_{1}, a_{2}\right)=\frac{1}{2 \pi i} \int_{\partial D_{2}} \frac{f\left(z_{1}, z_{2}\right)}{z_{2}-z_{2}} d z_{1} \quad f\left(a_{1}, z_{n}\right)=\frac{1}{2 \pi i} \int_{\partial D_{2}} \frac{f\left(z_{1}, z_{2}\right)}{\left(z_{1}-a_{1}\right)} d z_{2}
$$

Then just plug the first into the second.
Applications: First make the following changes $a_{i} \rightsquigarrow z_{i}, z_{i} \rightsquigarrow \eta_{i}$, then

$$
f\left(z_{1}, \ldots, z_{n}\right)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\partial D_{1} \times \cdots \times \partial D_{n}} \frac{f(\eta)}{\left(\eta_{1}-z_{1}\right) \ldots\left(\eta_{n}-z_{n}\right)} d \eta_{1} \wedge \cdots \wedge d \eta_{n}
$$

As before in the single variable case we make the following replacements

$$
\frac{1}{\prod\left(\eta_{i}-z_{i}\right)}=\frac{1}{\eta_{1} \ldots \eta_{n}} \prod \frac{1}{1-\frac{z_{i}}{\eta_{i}}}=\frac{1}{\eta_{1} \ldots \eta_{n}} \sum_{\alpha} \frac{z^{\alpha}}{\eta^{\alpha}}
$$

for $\eta \in \partial D_{1} \times \cdots \times \partial D_{n}$ we have uniform converge for z on compact subsets of D. So by the Lebesgue dominated convergence theorem

$$
f(z)=\sum_{\alpha} a_{\alpha} z^{\alpha} \quad a_{\alpha}=\left(\frac{1}{2 \pi i}\right)^{n} \int \frac{f(\eta)}{\eta_{1}^{\alpha_{1}+1} \ldots \eta_{n}^{\alpha_{n}+1}} d \eta_{1} \wedge \cdots \wedge d \eta_{n}
$$

Theorem. U open in $\mathbb{C}^{n}, f \in \mathcal{O}(U), a \in U$ and D a polydisk centered at a with $\bar{D} \subseteq U$ then on D we have

$$
f(z)=\sum_{\alpha} a_{\alpha}\left(z_{1}-a_{1}\right)^{\alpha_{1}} \ldots\left(z_{n}-a_{n}\right)^{\alpha_{n}}
$$

(we will call this (*) from now on)
Proof. Apply the previous little theorem to $f(z-a)$.
Note we can check by differentiation that the coefficients are $a_{\alpha}=\frac{1}{\alpha!} \partial f / \partial z^{\alpha}(a)$.
Theorem. U is a connected open set in \mathbb{C}^{n} with $f, g \in \mathcal{O}(U)$. If $f=g$ on an open subset $V \subset U$ then $f=g$ on all of U.

Proof. As in one dimension.
Theorem (Maximum Modulus Principle). U is a connected open set in $\mathbb{C}^{n}, f \in \mathcal{O}(U)$. If $|f|$ achieves a local maximum at some point $a \in U$ then f is constant

Proof. Left as exercise.
As a reminder:

Theorem. Let $g \in C_{0}^{\infty}(\mathbb{C})$ then if f is the function

$$
f(z)=\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{g(\eta)}{\eta-z} d \eta \wedge d \bar{\eta}
$$

then $f \in C^{\infty}(\mathbb{C})$ and $\partial f / \partial \bar{z}=g$.
What about the n-dimensional case? That is, given $h_{i} \in C_{0}^{\infty}\left(\mathbb{C}^{n}\right), i=1, \ldots, n$ does there exist $f \in$ $C^{\infty}\left(\mathbb{C}^{n}\right)$ such that $\frac{\partial f}{\partial \bar{z}_{i}}=h_{i}, i=1, \ldots, n ?$

There clearly can't always be a solution because we have the integrability conditions

$$
\frac{\partial h_{i}}{\partial \bar{z}_{j}}=\frac{\partial h_{j}}{\partial \bar{z}_{i}}
$$

Theorem (Multidimensional Inhomogeneous CR equation). If the h_{i} 's satisfy these integrability conditions then there exists an $f \in C^{\infty}\left(\mathbb{C}^{n}\right)$ with $\partial f / \partial \bar{z}_{i}=h_{i}$. And in fact such a solution is given by

$$
f\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{h_{1}\left(\eta_{1}, z_{2}, \ldots, z_{n}\right)}{\left(\eta_{1}-z_{1}\right)} d \eta_{1} \wedge d \bar{\eta}_{1}
$$

Proof. This just says for get about everything except the first variable.
Clearly $f \in C^{\infty}\left(\mathbb{C}^{n}\right)$ and $\partial f / \partial \bar{z}_{1}=h_{1}$. Now $\partial f / \partial \bar{z}_{i}$ we compute under the integral sign and we get

$$
\frac{\partial}{\partial \bar{z}_{i}} h_{1}\left(\eta_{1}, z_{2}, \ldots, z_{n}\right) \frac{1}{\eta_{i}-z_{i}} \in L^{\prime}\left(\eta_{1}\right)
$$

(so it is legitimate to differentiate under the integral sign). Now

$$
\begin{aligned}
\frac{\partial f}{\partial \bar{z}_{i}} & =\frac{1}{2 \pi i} \int \frac{\partial h_{1}}{\partial \bar{z}_{j}}\left(\eta_{1}, z_{2}, \ldots, z_{n}\right) \frac{d \eta_{1} \wedge d \bar{\eta}_{1}}{\eta_{1}-z_{1}} \\
& =\frac{1}{2 \pi i} \int \frac{\partial h_{j}}{\partial \eta_{1}}\left(\eta_{1}, z_{2}, \ldots, z_{n}\right) \frac{d \eta_{1} \wedge d \bar{\eta}_{1}}{\eta_{1}-z_{1}} \\
& =h_{j}\left(z_{1}, \ldots, z_{n}\right)
\end{aligned}
$$

The second set is by integrability conditions, and the lat is by the previous lemma. QED.
Let $K \Subset \mathbb{C}^{n}$ be a compact st. Suppose $\mathbb{C}^{n}-K$ is connected. Suppose $h_{i} \in C_{0}^{\infty}\left(\mathbb{C}^{n}\right)$ are supported in K. Theorem. If f is the function $(*)$ then $\operatorname{supp} f \subseteq K$ (unique to higher dimension). So not only do we have a solution to the ICR eqn, it is compactly supported.
Proof. By $(*) f\left(z_{1}, \ldots, z_{n}\right)$ is identically 0 when $\left(z_{i}\right) \gg 0, i>1$, because h_{i} is compactly supported. Also, since supp $h_{i} \subseteq K$ and $\partial f / \partial \bar{z}_{i}=h_{i}$ we have that $\partial f / \partial \bar{z}_{i}=0$ on $\mathbb{C}^{n}-K$, so $f \in \mathcal{O}\left(\mathbb{C}^{n}-K\right)$. The uniqueness of analytic continuation we have $f \equiv 0$ on $\mathbb{C}^{n}-K$ (used that $\mathbb{C}^{n}-K$ is connected)
Theorem (Hartog's Theorem). Let $K \Subset U, U \subset \mathbb{C}^{n}$ is open and connected. Suppose that $U-K$ is connected. Let $f \in \mathcal{O}(U-K)$ then f extends holomorphically to all of U. THIS IS A PROPERTY SPECIFIC TO HIGHER DIMENSIONAL SPACES.
Proof. Let $K_{1} \Subset U$ so that $K \subset \operatorname{Int} K_{1}, U-K_{1}$ is connected. Choose $\varphi \in C^{\infty}\left(\mathbb{C}^{n}\right)$ such that $\varphi \equiv 1$ on K and $\operatorname{supp} \varphi \subset \operatorname{Int} K_{1}$. Let

$$
v= \begin{cases}(1-\varphi) f & \text { on } U-K \\ 0 & \text { on } K\end{cases}
$$

then $v \in C^{\infty}(U)$. And $v \equiv f$ on $U-K$. $h_{i}=\frac{\partial}{\partial \bar{z}_{i}} v, i=1, \ldots, n$. One $U-K_{1}, v=f \in \mathcal{O}\left(U-K_{1}\right)$ so $h_{i}=\frac{\partial}{\partial \bar{z}_{i}} f$ on $U-K 1$ and f is holomorphic, so this is 0 , thus $h_{i} \in C_{0}^{\infty}\left(\mathbb{C}^{n}\right)$, supp $h_{i} \subseteq K_{1}$ and $\frac{\partial h_{i}}{\partial \bar{z}_{j}}=\frac{\partial h_{j}}{\partial \bar{z}_{j}}$, so $\exists w \in C_{0}^{\infty}\left(\mathbb{C}^{n}\right)$ such that $\frac{\partial w}{\partial \bar{z}_{i}}=h_{i}$ and $\operatorname{supp} w \subseteq K_{1}$. Take $g=v-w$ so $w \equiv 0$ on $\mathbb{C}^{n}-K, v=f$ on $\mathbb{C}^{n}-K_{1}$, so $g=f$ on $\mathbb{C}^{n}-K$ and by construction

$$
\frac{\partial g}{\partial \bar{z}_{i}}=\frac{\partial v}{\partial \bar{z}_{i}}-\frac{\partial w}{\partial \bar{z}_{i}}=h_{i}-\frac{\partial}{\partial \bar{z}_{i}} w=0
$$

so $g \in \mathcal{O}(U)$ and $g=f$ on $U-K_{1}, f \in C^{\infty}(U-K)$, since $U-K$ connected, by uniqueness of analytic continuation $g=f$ on $U-K$, so g is holomorphic continuation of f onto all of U.

