Lecture 2

Cauchy integral formula again. U an open bounded set in $\mathbb{C}, \partial U$ smooth, $f \in C^{\infty} \overline{(U)}, z \in U$

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial U} \frac{f(\eta)}{\eta-z} d \eta+\frac{1}{2 \pi i} \int_{U} \frac{\partial f}{\partial \bar{\eta}}(\eta) \frac{1}{\eta-z} d \eta \wedge d \bar{\eta}
$$

the second term becomes 0 when f is holomorphic, i.e. the area integral vanishes, and we get

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial U} \frac{f(\eta)}{\eta-z} d \eta
$$

Now take $D:|z-a|<\epsilon, f \in \mathcal{O}(D) \cap C^{\infty}(\bar{D})$, then

$$
f(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(a+\epsilon e^{i \theta}\right) d \theta
$$

More applications:

Theorem (Maximum Modulus Principle). U angy open connected set in $\mathbb{C}, f \in \mathcal{O}(U)$ then if $|f|$ has a local maximum value at some point $a \in U$ then f has to be constant.

First, a little lemma.

Lemma. If $f \in \mathcal{O}(U)$ and Ref $\equiv 0$, then f is constant.
Proof. Trivial consequence of the definition of holomorphic.
Proof of Maximum Modulus Principle. Assume $f(a)$ is positive (we can do this by a trivial normalization operation). Let $u(z)=\operatorname{Re} f$. Now from above

$$
f(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(a+\epsilon e^{i \theta}\right) d \theta
$$

The LHS is real valued and trivially

$$
f(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(a) d \theta
$$

we subtract the above 2 and we get

$$
0=\int_{0}^{2 \pi} f(a)-u\left(a+\epsilon e^{\theta}\right) d \theta
$$

When ϵ is sufficiently small, since a is a local maximum, the integral is greater than $0, f(a)=u\left(a+\epsilon e^{i \theta}\right)$ so Re f is constant in a neighborhood of a and we can normalize and assume $\operatorname{Re} f=0$ near a, so by analytic continuation f is constant on U.

Inhomogeneous CR Equation

Consider U an open bounded subset of $\mathbb{C}, \partial U$ a smooth boundary, $g \in C^{\infty}(\bar{U})$. The Inhomogeneous CR equation is the following PDE: find $f \in C^{\infty}(U)$ such that

$$
\frac{\partial f}{\partial \bar{z}}=g
$$

The question is, does there exists a solution for arbitrary g ?
First, consider another, simpler version of CR with $g \in C_{0}^{\infty}(\mathbb{C})$. Does there exists $f \in C^{\infty}(\mathbb{C})$ such that $\partial f / \partial \bar{z}=g$?
Lemma. We claim the function f defined by the integral

$$
f(z)=\frac{1}{2 \pi i} \int \frac{g(\eta)}{\eta-z} d \eta \wedge d \bar{\eta}
$$

is in $C^{\infty}(\mathbb{C})$ and satisfies $\partial f / \partial \bar{z}=g$.
Proof. Perform the change of variables $w=z-\eta, d w=-d \eta, d \bar{w}=-d \bar{\eta}$ and $\eta=z-w$ then the integral above becomes

$$
-\int \frac{g(z-w)}{w} d w \wedge d \bar{w}=f(z)
$$

Now it is clear that $f \in C^{\infty}(\mathbb{C})$, because if we take $\partial / \partial z$, we can just keep differentiating under the integral. And now

$$
\frac{\partial f}{\partial z}=-\frac{1}{2 \pi i} \int \frac{\left(\frac{\partial g}{\partial \bar{z}}\right)(z-w)}{w} d w \wedge d \bar{w}=\frac{1}{2 \pi i} \int \frac{\left(\frac{\partial g}{\partial \bar{\eta}}\right)(\eta)}{\eta-z} d \eta \wedge d \bar{\eta}
$$

Let $A=\operatorname{supp} g$, so A is compact, then there exists U open and bounded such that ∂U is smooth and $A \subset U$. For $g \in C^{\infty}(\bar{U})$ write down using the Cauchy integral formula

$$
g(z)=\frac{1}{2 \pi i} \int_{\partial U} \frac{g(\eta)}{\eta-z} d \eta+\frac{1}{2 \pi i} \int_{U} \frac{\partial g}{\partial \bar{\eta}}(\eta) \frac{d \eta \wedge d \bar{\eta}}{\eta-z}
$$

On $\partial U, g$ is identically 0 , so the first integral is 0 . For the second integral we replace A by the entire complex plane, so

$$
g(z)=\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{\partial g}{\partial \bar{\eta}}(\eta) \frac{d \eta \wedge d \bar{\eta}}{\eta-z}
$$

which is the expression for $\frac{\partial f}{\partial \bar{z}}$

Now, we want to get rid of our compactly supported criterion. Let U be bounded, ∂U smooth and $g \in C^{\infty}(\bar{U}), \frac{\partial f}{\partial z}=g$.

Make the following definition

$$
f(z):=\frac{1}{2 \pi i} \int_{U} \frac{g(\eta)}{\eta-z} d \eta \wedge d \bar{\eta}
$$

Take $a \in U, D$ an open disk about $a, \bar{D} \subset U$. Check that $f \in C^{\infty}$ on D and that $\partial f / \partial \bar{z}=g$ on D. Since a is arbitrary, if we can prove this we are done. Take $\rho \in C_{0}^{\infty}(U)$ so that $\rho \equiv 1$ on a neighborhood of \bar{D}, then

$$
f(z)=\underbrace{\frac{1}{2 \pi i} \int \frac{\rho(\eta) g(\eta)}{\eta-z} d \eta \wedge d \bar{\eta}}_{I}+\underbrace{\frac{1}{2 \pi i} \int(1-\rho) \frac{g(\eta)}{\eta-z} d \eta \wedge d \bar{\eta}}_{I I}
$$

The first term, I, is in $C_{0}^{\infty}(\mathbb{C})$, so I is C^{∞} on \mathbb{C} and $\partial I / \partial \bar{z}=\rho g$ on \mathbb{C} and so is equal to $\left.g\right|_{D}$. We claim that $\left.I I\right|_{D}$ is in $\mathcal{O}(D)$. The Integrand is 0 on an open set containing D, so $\partial I I / \partial \bar{z}=0$ on D.

We conclude that $\partial f(z) / \partial \bar{z}=g(z)$ on D. (The same result could have just been obtained by taking a partition of unity)

Transition to Several Complex Variables

We are now dealing with \mathbb{C}^{n}, coordinatized by $z=\left(z_{1}, \ldots, z_{n}\right)$, and $z_{k}=x_{k}+i y_{k}$ and $d z_{k}=d x_{k}+i d y_{k}$.
Given U open in $\mathbb{C}^{n}, f \in C^{\infty}(U)$ we define

$$
\frac{\partial f}{\partial z_{k}}=\frac{1}{2}\left(\frac{\partial f}{\partial x_{k}}-i \frac{\partial f}{\partial y_{k}}\right) \quad \frac{\partial f}{\partial \bar{z}_{k}}=\frac{1}{2}\left(\frac{\partial f}{\partial x_{k}}+i \frac{\partial f}{\partial y_{k}}\right)
$$

So the de Rham differential is defined by

$$
d f=\sum\left(\frac{\partial f}{\partial x_{i}} d x_{i}+\frac{\partial y}{\partial y_{i}} d y_{i}\right)=\sum \frac{\partial f}{\partial z_{k}} d z_{k}+\sum \frac{\partial f}{\partial \bar{z}_{k}} d \bar{z}_{k}:=\partial f+\bar{\partial} f
$$

so $d f=\partial f+\bar{\partial} f$.
Let $\Omega^{1}(U)$ be the space of C^{∞} de Rham 1-forms, and $u \in \Omega^{1}(U)$ then

$$
u=u^{\prime}+u^{\prime \prime}=\sum a_{i} d z_{i}+\sum b_{i} d \bar{z}_{i} \quad a_{i}, b_{i} \in C^{\infty}(U)
$$

we introduce the following notation

$$
\begin{aligned}
& \Omega^{1,0}=\left\{\sum a_{k} d z_{k}, a_{k} \in C^{\infty}(U)\right\} \\
& \Omega^{0,1}=\left\{\sum b_{k} d \bar{z}_{k}, b_{k} \in C^{\infty}(U)\right\}
\end{aligned}
$$

and therefore there is a decomposition $\Omega^{1}(U)=\Omega^{1,0}(U) \oplus \Omega^{0,1}(U)$. We can rephrase a couple of the lines above in the following way: $d f=\partial f+\bar{\partial} f, \partial f \in \Omega^{1,0}, \bar{\partial} f \in \Omega^{0,1}$.
Definition. $f \in \mathcal{O}(U)$ if $\bar{\partial} f=0$, i.e. if $\partial f / \partial \bar{z}_{k}=0, \forall k$.
Lemma. For $f, g \in C^{\infty}(U), \bar{\partial} f g=f \bar{\partial} g+g \bar{\partial} f$, thus $f g \in \mathcal{O}(U)$.
Obviously, $z_{1}, \ldots, z_{n} \in \mathcal{O}(U)$.
If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{i} \in \mathbb{N}$, then $z^{\alpha}=z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}$ and $z^{\alpha} \in \mathcal{O}(\mathbb{C})$. Then

$$
p(z)=\sum_{|\alpha| \leq N} a_{\alpha} z^{\alpha} \in \mathcal{O}\left(\mathbb{C}^{n}\right)
$$

Even more generally, suppose we have the formal power series

$$
f(z)=\sum_{\alpha} a_{\alpha} z^{\alpha}
$$

and $\left|a_{\alpha}\right| \leq C R_{1}^{-\alpha_{1}} \ldots R_{n}^{-\alpha_{n}}$. Then let $D_{k}:\left|z_{k}\right|<R_{k}$ and $D=D_{1} \times \cdots \times D_{n}$ then $f(z)$ converges on D and uniformly on compact sets in D, and by differentiation we see that $f \in \mathcal{O}(D)$.
Definition. Let $D_{i}:\left|z-a_{i}\right|<R_{n}$, then open set $D_{1} \times \cdots \times D_{n}$ is called a polydisk.

