Lecture 2

Cauchy integral formula again. U an open bounded set in \mathbb{C} , ∂U smooth, $f \in C^{\infty}(\overline{U}), z \in U$

$$f(z) = \frac{1}{2\pi i} \int_{\partial U} \frac{f(\eta)}{\eta - z} d\eta + \frac{1}{2\pi i} \int_{U} \frac{\partial f}{\partial \bar{\eta}}(\eta) \frac{1}{\eta - z} d\eta \wedge d\bar{\eta}$$

the second term becomes 0 when f is holomorphic, i.e. the area integral vanishes, and we get

$$f(z) = \frac{1}{2\pi i} \int_{\partial U} \frac{f(\eta)}{\eta - z} d\eta$$

Now take $D: |z-a| < \epsilon, f \in \mathcal{O}(D) \cap C^{\infty}(\overline{D})$, then

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + \epsilon e^{i\theta}) d\theta$$

More applications:

Theorem (Maximum Modulus Principle). U any open connected set in \mathbb{C} , $f \in \mathcal{O}(U)$ then if |f| has a local maximum value at some point $a \in U$ then f has to be constant.

First, a little lemma.

Lemma. If $f \in \mathcal{O}(U)$ and $Ref \equiv 0$, then f is constant.

Proof. Trivial consequence of the definition of holomorphic.

Proof of Maximum Modulus Principle. Assume f(a) is positive (we can do this by a trivial normalization operation). Let $u(z) = \operatorname{Re} f$. Now from above

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + \epsilon e^{i\theta}) d\theta$$

The LHS is real valued and trivially

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a)d\theta$$

we subtract the above 2 and we get

$$0 = \int_0^{2\pi} f(a) - u(a + \epsilon e^{\theta}) d\theta.$$

When ϵ is sufficiently small, since a is a local maximum, the integral is greater than 0, $f(a) = u(a + \epsilon e^{i\theta})$ so Re f is constant in a neighborhood of a and we can normalize and assume Re f = 0 near a, so by analytic continuation f is constant on U.

Inhomogeneous CR Equation

Consider U an open bounded subset of \mathbb{C} , ∂U a smooth boundary, $g \in C^{\infty}(\overline{U})$. The Inhomogeneous CR equation is the following PDE: find $f \in C^{\infty}(U)$ such that

$$\frac{\partial f}{\partial \bar{z}} = g$$

The question is, does there exists a solution for arbitrary g? First, consider another, simpler version of CR with $g \in C_0^{\infty}(\mathbb{C})$. Does there exists $f \in C^{\infty}(\mathbb{C})$ such that $\partial f / \partial \bar{z} = g?$

Lemma. We claim the function f defined by the integral

$$f(z) = \frac{1}{2\pi i} \int \frac{g(\eta)}{\eta - z} d\eta \wedge d\bar{\eta}$$

is in $C^{\infty}(\mathbb{C})$ and satisfies $\partial f/\partial \bar{z} = g$.

Proof. Perform the change of variables $w = z - \eta$, $dw = -d\eta$, $d\bar{w} = -d\bar{\eta}$ and $\eta = z - w$ then the integral above becomes

$$-\int \frac{g(z-w)}{w} dw \wedge d\bar{w} = f(z)$$

Now it is clear that $f \in C^{\infty}(\mathbb{C})$, because if we take $\partial/\partial z$, we can just keep differentiating under the integral. And now (22) (22)

$$\frac{\partial f}{\partial z} = -\frac{1}{2\pi i} \int \frac{\left(\frac{\partial g}{\partial \bar{z}}\right)(z-w)}{w} dw \wedge d\bar{w} = \frac{1}{2\pi i} \int \frac{\left(\frac{\partial g}{\partial \bar{\eta}}\right)(\eta)}{\eta-z} d\eta \wedge d\bar{\eta}$$

Let A = supp g, so A is compact, then there exists U open and bounded such that ∂U is smooth and $A \subset U$. For $q \in C^{\infty}(\overline{U})$ write down using the Cauchy integral formula

$$g(z) = \frac{1}{2\pi i} \int_{\partial U} \frac{g(\eta)}{\eta - z} d\eta + \frac{1}{2\pi i} \int_{U} \frac{\partial g}{\partial \bar{\eta}}(\eta) \frac{d\eta \wedge d\bar{\eta}}{\eta - z}$$

On ∂U , g is identically 0, so the first integral is 0. For the second integral we replace A by the entire complex plane, so

$$g(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial g}{\partial \bar{\eta}}(\eta) \frac{d\eta \wedge d\bar{\eta}}{\eta - z}$$

which is the expression for $\frac{\partial f}{\partial \bar{z}}$

Now, we want to get rid of our compactly supported criterion. Let U be bounded, ∂U smooth and $g \in C^{\infty}(\overline{U}), \frac{\partial f}{\partial \overline{z}} = g.$

Make the following definition

$$f(z) := \frac{1}{2\pi i} \int_U \frac{g(\eta)}{\eta - z} d\eta \wedge d\bar{\eta}$$

Take $a \in U$, D an open disk about $a, \overline{D} \subset U$. Check that $f \in C^{\infty}$ on D and that $\partial f/\partial \overline{z} = g$ on D. Since a is arbitrary, if we can prove this we are done. Take $\rho \in C_0^{\infty}(U)$ so that $\rho \equiv 1$ on a neighborhood of \overline{D} , then

$$f(z) = \underbrace{\frac{1}{2\pi i} \int \frac{\rho(\eta)g(\eta)}{\eta - z} d\eta \wedge d\bar{\eta}}_{I} + \underbrace{\frac{1}{2\pi i} \int (1 - \rho) \frac{g(\eta)}{\eta - z} d\eta \wedge d\bar{\eta}}_{II}$$

The first term, I, is in $C_0^{\infty}(\mathbb{C})$, so I is C^{∞} on \mathbb{C} and $\partial I/\partial \bar{z} = \rho g$ on \mathbb{C} and so is equal to $g|_D$. We claim that $II|_D$ is in $\mathcal{O}(D)$. The Integrand is 0 on an open set containing D, so $\partial II/\partial \bar{z} = 0$ on D.

We conclude that $\partial f(z)/\partial \bar{z} = g(z)$ on D. (The same result could have just been obtained by taking a partition of unity)

Transition to Several Complex Variables

We are now dealing with \mathbb{C}^n , coordinatized by $z = (z_1, \ldots, z_n)$, and $z_k = x_k + iy_k$ and $dz_k = dx_k + idy_k$. Given U open in \mathbb{C}^n , $f \in C^{\infty}(U)$ we define

$$\frac{\partial f}{\partial z_k} = \frac{1}{2} \left(\frac{\partial f}{\partial x_k} - i \frac{\partial f}{\partial y_k} \right) \qquad \frac{\partial f}{\partial \bar{z}_k} = \frac{1}{2} \left(\frac{\partial f}{\partial x_k} + i \frac{\partial f}{\partial y_k} \right)$$

So the de Rham differential is defined by

$$df = \sum \left(\frac{\partial f}{\partial x_i} dx_i + \frac{\partial y}{\partial y_i} dy_i\right) = \sum \frac{\partial f}{\partial z_k} dz_k + \sum \frac{\partial f}{\partial \bar{z}_k} d\bar{z}_k := \partial f + \bar{\partial} f$$

so $df = \partial f + \overline{\partial} f$.

Let $\Omega^1(U)$ be the space of C^{∞} de Rham 1-forms, and $u \in \Omega^1(U)$ then

$$u = u' + u'' = \sum a_i dz_i + \sum b_i d\bar{z}_i \qquad a_i, b_i \in C^{\infty}(U)$$

we introduce the following notation

$$\Omega^{1,0} = \left\{ \sum a_k dz_k, a_k \in C^{\infty}(U) \right\}$$
$$\Omega^{0,1} = \left\{ \sum b_k d\bar{z}_k, b_k \in C^{\infty}(U) \right\}$$

and therefore there is a decomposition $\Omega^1(U) = \Omega^{1,0}(U) \oplus \Omega^{0,1}(U)$. We can rephrase a couple of the lines above in the following way: $df = \partial f + \overline{\partial} f$, $\partial f \in \Omega^{1,0}$, $\overline{\partial} f \in \Omega^{0,1}$.

Definition. $f \in \mathcal{O}(U)$ if $\overline{\partial} f = 0$, i.e. if $\partial f / \partial \bar{z}_k = 0$, $\forall k$.

Lemma. For $f, g \in C^{\infty}(U)$, $\overline{\partial} fg = f\overline{\partial} g + g\overline{\partial} f$, thus $fg \in \mathcal{O}(U)$.

Obviously, $z_1, \ldots, z_n \in \mathcal{O}(U)$. If $\alpha = (\alpha_1, \ldots, \alpha_n), \alpha_i \in \mathbb{N}$, then $z^{\alpha} = z_1^{\alpha_1} \ldots z_n^{\alpha_n}$ and $z^{\alpha} \in \mathcal{O}(\mathbb{C})$. Then $p(z) = \sum a_{\alpha} z^{\alpha} \in \mathcal{O}(\mathbb{C}^n)$

$$p(z) = \sum_{|\alpha| \le N} a_{\alpha} z^{\alpha} \in \mathcal{O}(\mathbb{C}^n)$$

Even more generally, suppose we have the formal power series

$$f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$$

and $|a_{\alpha}| \leq CR_1^{-\alpha_1} \dots R_n^{-\alpha_n}$. Then let $D_k : |z_k| < R_k$ and $D = D_1 \times \dots \times D_n$ then f(z) converges on D and uniformly on compact sets in D, and by differentiation we see that $f \in \mathcal{O}(D)$.

Definition. Let $D_i : |z - a_i| < R_n$, then open set $D_1 \times \cdots \times D_n$ is called a **polydisk**.