Chapter 1

Several Complex Variables

Lecture 1

Lectures with Victor Guillemin,Texts:
Hormander: Complex Analysis in Several Variables
Griffiths: Principles in Algebraic Geometry
Notes on Elliptic Operators
No exams, 5 or 6 HW's.
Syllabus (5 segments to course, 6-8 lectures each)

1. Complex variable theory on open subsets of \mathbb{C}^{n}. Hartog, simply pseudoconvex domains, inhomogeneous C.R.
2. Theory of complex manifolds, Kaehler manifolds
3. Basic theorems about elliptic operators, pseudo-differential operators
4. Hodge Theory on Kaehler manifolds
5. Geometry Invariant Theory.

1 Complex Variable and Holomorphic Functions

U an open set in \mathbb{R}^{n}, let $C^{\infty}(U)$ denote the C^{∞} function on U. Another notation for continuous function: Let A be any subset of $\mathbb{R}^{n}, f \in C^{\infty}(A)$ if and only $f \in C^{\infty}(U)$ with $U \supset A, U$ open. That is, f is C^{∞} on A if it can be extended to an open set around it.

As usual, we will identify \mathbb{C} with \mathbb{R}^{2} by $z \mapsto(x, y)$ when $z=x+i y$. On \mathbb{R}^{2} the standard de Rham differentials are $d x, d y$. On \mathbb{C} we introduce the de Rham differentials

$$
d z=d x+i d y \quad d \bar{z}=d x-i d y
$$

Let U be open in $\mathbb{C}, f \in C^{\infty}(U)$ then the differential is given as follows

$$
\begin{aligned}
d f & =\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=\frac{\partial f}{\partial x}\left(\frac{d z+d \bar{z}}{2}\right)+\frac{\partial f}{\partial y}\left(\frac{d z-d \bar{z}}{2 i}\right) \\
& =\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right) d z+\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) d \bar{z}
\end{aligned}
$$

If we make the following definitions, the differential has a succinct form

$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right) \quad \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)
$$

so

$$
d f=\frac{\partial f}{\partial z} d z+\frac{\partial f}{\partial \bar{z}} d \bar{z}
$$

We take this to be the definition of the differential operator.

Definition. $f \in \mathcal{O}(U)$ (the holomorphic functions) iff $\partial f / \partial \bar{z}=0$. So if $f \in \mathcal{O}(U)$ then $d f=\frac{\partial f}{\partial z} d z$.

Examples

1. $z \in \mathcal{O}(U)$
2. $f, g \in C^{\infty}(U)$ then

$$
\frac{\partial f}{\partial \bar{z}} f g=\frac{\partial f}{\partial \bar{z}} g+f \frac{\partial g}{\partial \bar{z}}
$$

so if $f, g \in \mathcal{O}(U)$ then $f g \in \mathcal{O}(U)$.
3. By the above two, we can say z, z^{2}, \ldots and any polynomial in z is in $\mathcal{O}(U)$.
4. Consider a formal power series $f(z) \sim \sum_{i=1}^{\infty} a_{i} z^{i}$ where $\left|a_{i}\right| \leq($ const $) R^{-i}$. Then if $D=\{|z|<R\}$ the power series converges uniformly on any compact set in D, so $f \in C(D)$. And by term-by-term differentiation we see that the differentiated power series converges, so $f \in C^{\infty}(D)$, and the differential $\mathrm{w} /$ respect to \bar{z} goes to 0 , so $f \in \mathcal{O}(D)$.
5. $a \in \mathcal{C}, f(z)=\frac{1}{z-a} \in C^{\infty}(\mathcal{C}-\{a\})$.

Cauchy Integral Formula

Let U be an open bounded set in $\mathbb{C}, \partial U$ is smooth, $f \in C^{\infty}(\bar{U})$. Let $u=f d z$ by Stokes

$$
\int_{\partial U} f d z=\int_{U} d u \quad d u=\frac{\partial f}{\partial z} d z \wedge d z+\frac{\partial f}{\partial \bar{z}} d \bar{z} \wedge d z
$$

so

$$
\int_{\partial U} f d z=\int_{U} d u=\int_{U} \frac{\partial f}{\partial \bar{z}} d \bar{z} \wedge d z
$$

Now, take $a \in U$ and remove $D_{\epsilon}=\{|z-a|<\epsilon\}$, and let the resulting region be $U_{\epsilon}=U-\bar{D}_{\epsilon}$. Replace f in the above by $\frac{f}{z-a}$. Note that $(z-a)^{-1}$ is holomorphic. We get

$$
\int_{\partial U_{\epsilon}} \frac{f}{z-a} d z=\int_{U_{\epsilon}} \frac{\partial f}{\partial \bar{z}} \frac{1}{z-a} d \bar{z} \wedge d z
$$

Note: The boundary of U is oriented counter-clockwise, and the inner boundary D_{ϵ} is oriented clockwise. When orientations are taken into account the above becomes

$$
\begin{equation*}
\int_{\partial U} \frac{f}{z-a} d z-\int_{\partial D_{\epsilon}} \frac{f(z)}{z-a} d z=\int_{U_{\epsilon}} \frac{\partial f}{\partial \bar{z}} \frac{1}{z-a} d \bar{z} \wedge d z \tag{1.1}
\end{equation*}
$$

The second integral, with the change of coordinates $z=a+\epsilon e^{i \theta}, d z=i \epsilon e^{i \theta}, \frac{d z}{z-a}=i d \theta$. This gives

$$
\int_{\partial D_{\epsilon}} \frac{f(z)}{z-a} d z=i \int_{0}^{2 \pi} f\left(a+e^{i \theta}\right) d \theta
$$

Now we look at what happens when $\epsilon \rightarrow 0$. Well, $\frac{1}{z-a} \in \mathcal{L}^{1}(U)$, so by Lebesgue dominated convergence if we let $U_{\epsilon} \rightarrow U$, and the integral remians unchanged. On the left hand side we get $-i f(a) 2 \pi$, and altogether we have

$$
2 \pi i f(a)=\int_{U} \frac{f}{z-a} d z+\int_{U} \frac{\partial f}{\partial \bar{z}} \frac{1}{z-a} d z \wedge d \bar{z}
$$

In particular, if $f \in \mathcal{O}(U)$ then

$$
2 \pi i f(a)=\int_{\partial U} \frac{f}{z-a} d z
$$

Applications:
$f \in C^{\infty}(\bar{U}) \cap \mathcal{O}(U)$, take $a \rightsquigarrow z, z \rightsquigarrow \eta$ then just rewriting

$$
2 \pi i f(z)=\int_{\partial U} \frac{f(\eta)}{\eta-z} d \eta
$$

If we let $U=\{D:|z|<R\}$. Then

$$
\frac{1}{\eta-z}=\frac{1}{\eta\left(1-\frac{z}{\eta}\right)}=\frac{1}{\eta} \sum_{k=0}^{\infty} \frac{z^{k}}{\eta^{k}}
$$

and since on boundary $|\eta|=R,|z|<R$ so the series converges uniformly on compact sets, we get

$$
\int_{\partial U} \frac{f(\eta)}{\zeta-z} d \eta=\sum_{k=0}^{\infty} a_{k} z^{k} \quad a_{k}=\int_{|\eta|=R} \frac{f(\eta)}{\eta^{k+1}} d \eta
$$

or $a_{k}=\frac{1}{k!} \frac{\partial^{k}}{\partial z^{k}} f(0)$. This is the holomorphic Taylor expansion.
Now if we take $z \rightsquigarrow z-a, D:|z-a|<R, f \in \mathcal{O}(U) \cap C^{\infty}(\bar{U})$ then

$$
f(z)=\sum a_{k}(z-a)^{k} \quad a_{k}=\frac{1}{k!} \frac{\partial^{k}}{\partial z^{k}} f(a)
$$

We can apply this a prove a few theorems.
Theorem. U a connected open set in $\mathbb{C} . f, g \in \mathcal{O}(U)$, suppose there exists an open subset V of U on which $f=g$. We can conclude $f \equiv g$, this is unique analytic continuation.
Proof. W set of all points $a \in U$ where

$$
\frac{\partial^{k} f}{\partial z^{k}}(a)=\frac{\partial^{k} g}{\partial z^{k}} \quad k=0,1, \ldots
$$

holds. Then W is closed, and we see that W is also open, so $W=U$.

