MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Solution for 18.112 ps 4

1(Prob 3 on P130).

Method 1. We only need to prove that these functions has no limit as z tends to infinity. We can prove this by constructing two sequence $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ of complex numbers such that

$$
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} w_{n}=\infty
$$

but

$$
\lim _{n \rightarrow \infty} f\left(z_{n}\right) \neq \lim _{n \rightarrow \infty} f\left(w_{n}\right) .
$$

- For

$$
f(z)=e^{z},
$$

take

$$
z_{n}=n, w_{n}=-n ;
$$

- For

$$
f(z)=\sin z \text { or } f(z)=\cos z
$$

take

$$
z_{n}=2 \pi n, w_{n}=2 \pi n+1
$$

Method 2. By definition, we only need to prove that

$$
\lim _{z \rightarrow 0} z^{m} f\left(\frac{1}{z}\right) \neq 0
$$

for any (fixed) $m \in \mathbb{N}$. We can prove this by choosing one sequence $z_{n} \rightarrow 0$ such that

$$
\lim _{n \rightarrow \infty} z_{n}^{m} f\left(\frac{1}{z_{n}}\right) \neq 0
$$

- For

$$
f(z)=e^{z},
$$

take

$$
z_{n}=1 / n
$$

- For

$$
f(z)=\sin z \text { or } f(z)=\cos z
$$

take

$$
z_{n}=\frac{1}{n i} .
$$

Method 3. In Midterm we proved that if $f(z)$ is analytic in \mathbb{C} and has a nonessential singularity at ∞, then f is a polynomial. Now all the functions

$$
f_{1}(z)=e^{z}, f_{2}(z)=\sin z, f_{3}(z)=\cos z
$$

are analytic in \mathbb{C}, and none of them is polynomial (by Taylor expansion or by the number of zero points), so they have essential singularities at ∞.

2(Prob 4 on P133).

Solution: By the conditions we know that

$$
f(z)=f(0)+z h(z)
$$

where $h(z)$ is analytic in a neighborhood of 0 , and

$$
h(0) \neq 0
$$

Thus there is a small neighborhood $B_{\varepsilon}(0)$ such that h is analytic and nonzero in it. By Corollary 2 on Page 142, we can define a single-valued analytic function

$$
\tilde{h}(z)=h(z)^{1 / n}
$$

on $B_{\varepsilon}(0)$. Let

$$
g(z)=z \tilde{h}\left(z^{n}\right)
$$

we get

$$
\begin{aligned}
f\left(z^{n}\right) & =f(0)+z^{n} h\left(z^{n}\right) \\
& =f(0)+g(z)^{n}
\end{aligned}
$$

in $B_{\varepsilon}(0)$.

Remark: We can drop the condition

$$
f^{\prime}(0) \neq 0
$$

Since 0 is always a zero point of $f(z)-f(0)$, we can either write

$$
f(z)=f(0)+z^{m} h(z)
$$

where $h(z)$ is analytic in a neighborhood of 0 , and $h(0) \neq 0$; or have

$$
f(z) \equiv f(0)
$$

In the first case we can proceed as before with

$$
g(z)=z^{m} \tilde{h}\left(z^{n}\right)
$$

and the second case is trivial.

3(Prob 4 on P148).

Solution: Apply Corollary 2 in page 142 to analytic function

$$
f(z)=z
$$

we see that single-valued analytic branch of $\log z$ can be defined in any simply connected region which does not contain the origin. Then we can define singlevalued analytic branch of z^{α} and z^{z} by

$$
z^{\alpha}=e^{\alpha \log z}
$$

and

$$
z^{z}=e^{z \log z}
$$

