MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Solution for 18.112 ps 3

1(Prob 2 on P83).

Solution: First we will prove the following two lemmas.

Lemma 1. Reflection carries circles to circles.
Proof: Reflection is the composition of two maps: conjugation

$$
z \mapsto \bar{z}
$$

and linear transformation

$$
z \mapsto R^{2} /(z-\bar{a})+a,
$$

both maps will carry circles to circles, thus reflection carries circles to circles.

Lemma 2. Suppose circles C_{1}, C_{2} are both symmetric with respect to a line l, and C_{3} is the reflection image of C_{1} with respect to C_{2}. Then C_{3} is also symmetric with respect to the line l. (Compare this with the symmetry principle!)
Proof: Without loss of generality, we can suppose l is the x-axis, and the center of C_{2} is the origin. Then $z \in C_{1}$ and $z^{*} \in C_{3}$ are related by

$$
z^{*} \bar{z}=R^{2} .
$$

So

$$
\bar{z} \in C_{1} \Longrightarrow \bar{z}^{*} \in C_{3},
$$

i.e. C_{3} is symmetric with respect to l.

Now we return to our original problem. The symmetric point of z is

$$
z^{*}=1 /(\bar{z}-2)+2
$$

- Reflect the imaginary axis. By lemma 1, the image is a circle. By lemma 2, the image circle is symmetric with respect to the x-axis. More over,

$$
0^{*}=3 / 2, \infty^{*}=2
$$

both lie on the x-axis, so the image circle is

$$
\left|z-\frac{7}{4}\right|=\frac{1}{4}
$$

- Reflect the line $x=y$. Now the line l is $x+y=2$, and both

$$
(1+i)^{*}=(3+i) / 2 \text { and } \infty^{*}=2
$$

lie on l. So the image circle is

$$
\left|z-\frac{7+i}{4}\right|=\frac{\sqrt{2}}{4} .
$$

- Reflect the circle $|z|=1$. The line l is still the x-axis. By

$$
1^{*}=1, \quad(-1)^{*}=5 / 3
$$

we get the image circle

$$
\left|z-\frac{4}{3}\right|=\frac{1}{3} .
$$

2(Prob 3 on P88).

Solution: We consider the number of fixed points of S. If S has more than 2 fixed points, then it has to be identity map, which is automatically elliptic. Moreover, by equation (13) on page 86 , the fixed point will always exist (may be the point ∞).

Now we suppose that S has two distinct fixed points a and b, then we have

$$
\frac{S(z)-a}{S(z)-b}=k \frac{z-a}{z-b}
$$

Thus

$$
\begin{aligned}
\frac{z-a}{z-b} & =\frac{S^{n}(z)-a}{S^{n}(z)-b} \\
& =k \frac{S^{n-1}(z)-a}{S^{n-1}(z)-b} \\
& =k^{2} \frac{S^{n-2}(z)-a}{S^{n-2}(z)-b} \\
& =\cdots \cdots \\
& =k^{n} \frac{z-a}{z-b} .
\end{aligned}
$$

So

$$
k^{n}=1,
$$

which implies

$$
|k|=1
$$

and S is elliptic.
(If one of a, b, say a, is infinity, then

$$
S(z)-b=k(z-b) .
$$

By the same way above, we see that

$$
|k|=1
$$

and S is elliptic.)
At last suppose S has only one fixed point a. Let

$$
T z=1 /(z-a)+a,
$$

which maps a to ∞ and ∞ to a. Since T is one-to-one and onto, the map $T S T^{-1}$ has only one fixed point

$$
T a=\infty .
$$

Thus

$$
T S T^{-1} z=c z+d
$$

for some $c \neq 0$. I claim that $c=1$ in this case, otherwise

$$
f=d /(1-c)
$$

is another fixed point of $T S T^{-1}$. Now

$$
z=T S^{n} T^{-1} z=\left(T S T^{-1}\right)^{n} z=z+n d
$$

which implies

$$
d=0 .
$$

So

$$
T S T^{-1}=I d
$$

and

$$
S=T^{-1}(I d) T=I d
$$

is elliptic.

3(Prob 5 on P88).

Solution: First it is easy to check that two points $a, b \in \mathbb{C}$ corresponding to diametrically opposite points on the Riemann sphere if and only if

$$
a \bar{b}=-1
$$

(Check it!), thus

$$
b=-1 / \bar{a}
$$

Let T be a linear transformation which represent rotation \tilde{T} of the Riemann sphere. Then \tilde{T} has two fixed points, A, B, which are opposite points. Thus T has two fixed points, a and $-1 / \bar{a}$. Now consider the C_{2} circles,

$$
\frac{|z-a|}{|z+1 / \bar{z}|}=c .
$$

Let Z be the point on the Riemann sphere corresponding to z, then

$$
\begin{aligned}
\frac{|Z-A|}{|Z-B|} & =\frac{2|z-a| / \sqrt{\left(1+|z|^{2}\right)\left(1+|a|^{2}\right)}}{2|z+1 / \bar{a}| / \sqrt{\left(1+|z|^{2}\right)\left(1+|1 / \bar{a}|^{2}\right)}} \\
& =\frac{|z-a|}{|z+1 / \bar{z}|} \frac{\sqrt{1+|1 / \bar{a}|^{2}}}{\sqrt{1+|a|^{2}}}
\end{aligned}
$$

is constant, i.e. the C_{2} circles are mapped to the "latitudinal" circles on the Riemann sphere, which are invariant under the rotation \tilde{T}. So the C_{2} circles are unchanged under the mapping T, which tells us that T is elliptic.

On the other hand, suppose T is elliptic and has two fixed points $a,-1 / \bar{a}$, then T maps each C_{2} circle into itself, and maps C_{1} circle to some C_{1}^{\prime}, and the angle between C_{1} and C_{1}^{\prime} is $\arg k$ (See paragraph 3 on page 86). So \tilde{T} maps "latitudinal" circle to itself, and maps "longitudinal" circles to another "longitudinal" circle by rotating angle $\arg k$ since the stereographic projection is conformal. Thus \tilde{T} acts on C_{2} circle ("latitudinal" circle) by rotating a fixed angle $\arg k$, which implies that \tilde{T} is a rotation which fixes A, B.

Thus all linear transformations which represent rotations of the Riemann sphere are exactly all elliptic linear transformations with fixed points a and $-1 / \bar{a}$ (when $a=0$, let $-1 / \bar{a}=\infty)$.

4(Prob 2 on P108).

Solution:
1). $\int_{|z|=r} x d z=\int_{0}^{2 \pi}(r \cos t)(-r \sin t+i r \cos t) d t$

$$
\begin{aligned}
& =\int_{0}^{2 \pi}\left(-r^{2} \cos t \sin t+i r^{2} \cos ^{2} t\right) d t \\
& =\frac{r^{2}}{2} \int_{0}^{2 \pi}[-\sin 2 t+i(\cos 2 t+1)] d t \\
& =\frac{r^{2}}{2} \times i \times 2 \pi \\
& =\pi r^{2} i
\end{aligned}
$$

2). $\int_{|z|=r} x d z=\int_{|z|=r} \frac{z+r^{2} / z}{2} d z$

$$
\begin{aligned}
& =\int_{|z|=r} \frac{z}{2} d z+\int_{|z|=r} \frac{r^{2}}{2 z} d z \\
& =\frac{r^{2}}{2} \int_{|z|=r} \frac{1}{z} d z \\
& =\frac{r^{2}}{2} \times 2 \pi i \\
& =\pi r^{2} i
\end{aligned}
$$

5(Prob 4 on P108).

Solution:

$$
\begin{aligned}
\int_{|z|=1}|z-1||d z| & =\int_{0}^{2 \pi}\left|e^{i t}-1\right|\left|i e^{i t}\right| d t \\
& =\int_{0}^{2 \pi}|\cos t+i \sin t-1| d t \\
& =\int_{0}^{2 \pi} \sqrt{(\cos t-1)^{2}+\sin ^{2} t} \\
& =\int_{0}^{2 \pi} \sqrt{2-2 \cos t} d t \\
& =\int_{0}^{2 \pi} \sqrt{4 \sin ^{2}(t / 2)} d t \\
& =-\left.4 \cos (t / 2)\right|_{0} ^{2 \pi} \\
& =8
\end{aligned}
$$

