MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Solution for 18.112 ps 2

1(Prob 7 on P58).

Solution: Let A be a discrete set in separable metric space (X, d), then for any $a \in A$, there is $r_{a}>0$ such that

$$
A \cap N_{r_{a}}(a)=\{a\} .
$$

It follows that for any $a \neq b$ in A,

$$
N_{r_{a} / 2}(a) \cap N_{r_{b} / 2}(b)=\varnothing
$$

Let E be a countable dense subset, so we can find

$$
e_{a} \in E \cap N_{r_{a} / 2}(a)
$$

for each $a \in A$, and

$$
e_{a} \neq e_{b}
$$

for $a \neq b$. So we get an injection from A to E, and thus A is countable.
(Another way.) Subset of a separable metric space is still separable metric space. (It is not obvious. Prove it!) So A is separable. But the only dense subset of A is A itself, since A is discrete. So A is countable.

2(Prob 1 on P66).

Solution: Two simple examples:

$$
\begin{aligned}
f_{1}\left(r e^{i \theta}\right) & =\frac{r e^{i \theta}}{1-r} \\
f_{2}\left(r e^{i \theta}\right) & =\tan (\pi r / 2) e^{i \theta}
\end{aligned}
$$

It's not hard to check that they are one-to-one and onto and continuous, and their inverses are continuous.

More examples: take any topological map g maps $[0,1)$ to $[0, \infty)$, and any topological map h maps

$$
S^{1}=\left\{e^{i \theta} \mid \theta \in[0,2 \pi)\right\}
$$

to itself, then

$$
f\left(r e^{i \theta}\right)=g(r) h\left(e^{i \theta}\right)
$$

is a topological map from D to \mathbb{C}. For example,

$$
f\left(r e^{i \theta}\right)=\frac{7 r^{8} e^{i(\theta+\pi)}}{1-r^{5}}
$$

3(Prob 3 on P66).

Solution: Let $f: X \rightarrow Y$ be continuous and one-to-one, where X is compact. Then $f(X)$ is compact, and f^{-1} is well-defined on $f(X)$. We only need to prove that f^{-1} is continuous, i.e. $f=\left(f^{-1}\right)^{-1}$ maps closed set to closed set. This is true, since for any closed subset $A \in X, A$ is compact(since X is compact), thus $f(A)$ is compact, thus $f(A)$ is closed.

4(Prob 4 on P66).

Solution: Let

$$
d_{0}=\inf \{d(x, y) \mid x \in X, y \in Y\}
$$

For any $n \in \mathbb{N}$,take $x_{n} \in X, y_{n} \in Y$ such that

$$
d\left(x_{n}, y_{n}\right)<d_{0}+1 / n .
$$

Since X is compact, there is a subsequence $\left\{x_{n_{i}}\right\}$ which converges to a point $x_{0} \in X$. Since Y is also compact, there is a subsequence $\left\{y_{n_{i_{j}}}\right\}$ of $\left\{y_{n_{i}}\right\}$ which converges to a point $y_{0} \in Y$. Now

$$
\begin{aligned}
d_{0} & \leq d\left(x_{0}, y_{0}\right) \\
& \leq d\left(x_{0}, x_{n_{i_{j}}}\right)+d\left(y_{0}, y_{n_{i_{j}}}\right)+d\left(x_{n_{i_{j}}}, y_{n_{i_{j}}}\right) \\
& \leq d_{0}+3 / n
\end{aligned}
$$

for j (and thus $n_{i_{j}}$) big enough. So

$$
d\left(x_{0}, y_{0}\right)=d_{0}
$$

(Another way.) Prove that d is a continuous function on the product space $X \times Y$ by triangular inequality, and prove the product space $X \times Y$ is compact metric space by constructing a metric

$$
\tilde{d}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d\left(x_{1}, y_{1}\right)+d\left(x_{2}, y_{2}\right)
$$

and then use Theorem 7 in page 62 to prove compactness.

5(Prob 3 on P72).

Solution: It is easy to see that

$$
\left|f(z)^{2}-1\right|<1
$$

implies

$$
\operatorname{Re} f(z) \neq 0
$$

Since $\operatorname{Re} f(z)$ is continuous, thus maps connect set Ω to connect set in \mathbb{R} which does not contain 0. So

$$
\operatorname{Re} f(z)>0 \text { or } \operatorname{Re} f(z)<0
$$

throughout Ω.

